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Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos 
invariant amplitudes which have been shown by Williams to be free from kinematical 
singularities. This procedure allows to analyze the kinematical singularities of helicity 
amplitudes and separate them out, which results in the deflnition of regularized helicity 
amplitudes. 

A crossing matrix for helicity amplitudes, is written down, corresponding to the con- 
tinuation path used to cross spinor amplitudes. We verify explicitly that the corre- 
sponding crossing matrix for regularized helicity amplitudes is uniform, as it should be. 

Kinematical constraints which generalize, to the case of arbitrary spins and masses, 
relations which must hold between helicity amplitudes at some values of the energy ~ 
variable in ?rN -+ nN, 1r~ -+ Ni?, and Nm + Nfi reactions, appear as a consequence 
of the existence of poles in the crossing matrix between regularized helicity amplitudes. 

I. INTRODUCTION 

It is a common practice, in most studies concerning analyticity and crossing 
properties of scattering amplitudes, to deal with the scattering of spinless, equal 
mass, particles, and to speak of “the inessential complications due to spin”. 
However spin effects are quite important. It is obvious, for instance, that one 
must know explicitly the crossing matrix when working on exchange models 
(bootstrap, peripheralism, Regge poles . ..). In Regge-like models also, since the 
only properties one can conjecture on the Regge residues are their analyticity 
properties, it is important, in order not to make unreasonable assumptions, 
to distinguish the kinematical singularities from the dynamical ones. It has also 
been remarked that, in TN -+ TN, TT -+ NN, Nm + Nn scatterings, the helicity 
amplitudes must satisfy some relations which prevent them from introducing 
spurious poles into invariant amplitudes which are supposed to enjoy the 
Mandelstam analyticity properties. Such constraints put important restrictions 
on any reasonable assumption made for the purpose of Reggeizing amplitudes 
in the case of arbitrary spins and masses. [Cf. the “conspiracy or evasion” 
problem (I)]. 
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The purpose of this paper is three-fold: 

(i) We find the kinematical singularities of the two-body helicity amplitudes. 

(ii) We derive a crossing matrix for helicity amplitudes. 
(iii) We generalize, to the case of arbitrary spins and masses, the kinematical 

constraints already observed in rrN + TN, 7~7~ + NN and NN + NN reactions. 

Section II is devoted to the search for the kinematical singularities of the 
helicity amplitudes. The starting point is the work of Williams (2) who has shown 
that the Joos expansion (3) of spinor amplitudes leads to invariant amplitudes 
free from kinematical singularities .l This means that these invariant amplitudes 
are analytic functions of the invariants s and t in a domain which is the image 
of the analyticity domain of the spinor amplitudes in the four-momentum 
components restricted to the mass-shell; conversely, the inverse image of the 
analyticity domain in s and t is the whole analyticity domain of the spinor 
amplitude. The method we use to find the kinematical singularities of the helicity 
amplitudes consists in writing them as linear combinations of the Joos invariant 
amplitudes; the kinematical singularities are then the singularities of the coeffi- 
cients. Appendix AI is devoted to the cases where some of the external masses 
are equal and where the general analysis does not apply. 

In Section III we show that the crossing path used by Bras, Epstein and Glaser (5) 
to cross the spinor amplitudes is also suitable to perform crossing on helicity 
amplitudes. We derive explicitly the corresponding crossing matrix (up to an 
overall sign which is determined in Appendix A-II). Our crossing matrix appears 
to differ by an overall phase from that of Trueman and Wick* (6). In 
Appendix A-III, we check that the crossing matrix between regularized helicity 
amplitudes (R.H.A) has no branch points, which provides a good test for the 
correctness of our crossing matrix. Such a test is possible because, unlike some 
authors (7), (8), who have been previously interested in such questions, we use a 
direct method, independent from the crossing problem, to free helicity amplitudes 
from their kinematical singularities. 

Finally, we show in Section IV, (and in Appendix A-IV for special mass 
configurations), how the cancellation of poles in the elements of the crossing 
matrix for R.H.A provides a generalization of the kinematical constraints known 
in particular cases. Here, we use as a tool the so-called transversity amplitudes 
introduced by Kotanski (9). 

All our results are explicitly tested (in Appendix A-V) on cases in which the 
relations between invariant and helicity amplitudes are known, so that the 
kinematical singularities, the crossing matrices and the kinematical constraints 
can be directly derived. 

1 The existence of such an expansion had been previously proved by K. Hepp (4). 
*mB See Table XI and footnote 8b’s. 
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II. KINEMATICAL SINGULARITIES OF TWO-BODY HELICITY AMPLITUDES 

1. NOTATIONS AND CONVENTIONS 

A. Lorentz Transformations and SL(2, C) Matrices 

We briefly recall the correspondence between the Lore& transformations 
and the unimodular, 2 x 2 matrices: with a four-vector p, (p” + p02 - p2) we 
associate the 2 x 2 matrix p * u = p,l - p * u. It is easy to see that: 

(a) detp*a=p2 
(b) if A and B are two unimodular 2 x 2 matrices and p’ . u = Ap * uBT, 

thenp’2 = p2. Thus (A, B) E [SL(2, C) x X(2, C)]/Z2 is associated with a complex 
Lorentz transformation (1 : p +p’ = (lp. 

(c) if BT = A+, the Lorentz transformation (1 associated with (A, B) is real. 
(d) BT = A-l corresponds to a complex rotation, which is real if furthermore 

A-1 = A+. 
(e) (A, B) and (-A, -B) correspond to the same Lorentz transformation 
(f) p~~=~p”~=p~l+p~oissuchthat(p~u)(p~~)=(p~~)_)(p~u)=p~l 
(g) for any unimodular 2 x 2 matrix A, AT-l = E-~AE, where E = iu, . 
(h) pfi = 4 Tr(upp * 6). 

With any 2 x 2, non singular matrix M, we associate the matrix Da(M): 
defined by (3) 

= 
(det MP 

(s + p)! (s - p)! 
[ (s + A)! (s - A)! 1 l/2 (M,~)P-A (,;),+a j'f&W+A)(Z) (II-I) 

where Z = (M:Mi + MfM$/det M and P,*“(Z) is the Jacobi function of the 
first kind (20). If one takes for M a unimodular matrix A, (det M = l), one 
verifies that D8(A) is a finite-dimensional representation, of dimension 2s + 1, 
of the group SL(2, C) of such matrices: 

D8(A,); D8(A2); = D8(A,A2); . 

B. Spinor Amplitudes 

We first recall the definition of spinor states (3). Let (t”, ii, , ii, , iis) be the standard 
frame. For a particle at rest, of spin s and mass m, we first define the state 1 s, h), 
which transforms under a rotation (R, R-l) by 

U(R)1 s, A) = Da(R);’ ( s, h’), 
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where X is any eigenvalue of the operator -(l/m) W * A, . ( W is the polarization 
four-vector of the particle defined from the PoincarC group generators by (II) 
w, = -+ILypPc). 

Let now L(p) be a Lorentz transformation2 obeying 

L(P) i = plm, L(P) fi1 = h(P), 

L(P) g2 = n2(P), L(P) fi, = %(P), 

(p is the four momentum of the particle). We define the state 1 p, L(p), s, A) by 

I P9 L(P), ST A) = VL(P)) I sv A>. 

It is easy to verify that this state transforms under a Lorentz transformation A by 

WY P9 L(P), s, A) = D”(L-VP) AL(P)):’ I 4, L(Ap), s, xl) 

where L-l((lp) AL(p) is the so-called Wigner rotation (12). Now, if L’(p) is an 
other Lorentz transformation such that L(p) i = p/m one finds 

I P, L’(P), s9 A) = DYL-l(P) L’(P))?’ I P, L(P), & 0 

so that the state I p, s, A) = Ds(L-l(p)); I p, L(p), s, A) can be defined indepen- 
dently from L(p). Such a state is called a spinor state (3). It transforms simply 
under a Lorentz transformation A by 

wu p, s, & = w4;’ I Ap, s, A’). 

It is also useful to define three other types of states by 

-Gz6 = DW$ I p, 8, A’), 

I P, s, A) = Ds (y c-l);’ I p, s, A’), 

s = D* (5); I p, s, A’), 

* We shall use all along the phrase “Lorentz transformation L” to refer to the 2 x 2 unimodular 
matrix L. The notation Lp, where p is a 4-vector is a shorthand for (l/2) Tr[oLp . uL+] [see 
Sec. II-l-A(h)]. 
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which, under a Lorentz transformation A, transform, respectively, according to 

WQI p, s, A> = D”(A*)~ I flp, s, A’), 

U(&zg = D”(A’-1)s j m). 

We also define the conjugate bras by the following scalar products: 

<P, s, A I P’, s’, A’) = &&p - p’) % 6s,,Dg (f-$-);, , 

CUP’, s’, A’) = S,@ - p’) * S8,,S$ . 

They transform by the complex conjugate matrices, as they should in such a way 
that U(A) might be unitary. 

Let us now consider the following two body reaction: 1 + 2 + 3 + 4, 
p1 + pz = ps + p4 . The spinor amplitude is the following quantity: 

JtlAgA4:A1A8(p3p4p1p2) = 03 3 ~3 ,A3 ;~a 3 ~4 9 A4 I TI PI 3 $1, A, ; ~2, $2, A,), 

where T is defined from the S-matrix by 

S = 1 + WI4 a,(~, + p2 - p3 - p4) T. 

Now, since the two-body spinor states are simply obtained from the one-body 
spinor states by tensor product, the Lorentz invariance of the interaction is 
translated into the following covariance formula: 

for any Lorentz transformation d. 
Apart from this covariance property, the spinor amplitudes enjoy analyticity 

properties, some of which can be for instance derived from axiomatic field theory, 
where amplitudes emerge as Fourier transforms of vacuum expectation values 
of time ordered products of field operators. We recall now the Joos expansion (3) 
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of the spinor amplitude in terms of covariant polynomials, the coefficients of 
which have been proved by Williams (2) to have no kinematical singularity: 

where (J&)l;“l”~ is a Clebsch-Gordan coefficient and (J; $; S, , s2 , s3 , s&~,+++ 
is the coupling coefficient for s,s,s,s, to give J, $’ defining the coupling mode. 

YM6(e) is the solid spherical harmonic: 

Y&9 = [ 
(2e + l)(e + M)! (e - M)! 1 1/2 47r (c)WI [(@)lP]d-WI p@$4(~3) E 

e 
5 

= --E el+i=2 

2 
; E = sign(M); $ = & ; 

- 
e(pi , p3) is the semibivector associated with pi A pj : 

- - 
e(pt , PI> = $[PZPj - Pj%t - ih X PA1 @(pi , Pi)’ = *((Pi * Pg)’ - mi2mj2)), 

s = (PI + P7‘)2; t = (PI - PSY. 

udId,(s, t) is the Joos invariant amplitude. 

C. Helicity States and Amplitudes (13) 

(a) One-particle states 

The definition of an helicity state corresponds to a particular choice for L(p). 
For a one-particle state one chooses n,(p) = L(p) ii, to be in the 2-plane ?, p. 

(b) Two-particle states 

One Chooses n3(pI) and n,(p3 in the 2-plane p1 , p2 : 

I, = h,(i) = - 
mi2P - (pi * P)pi 

m,[(pi . P)” - m,2P2]1/2 ’ 

where P = p1 + p2 . The helicity four-vector h,,(i), (h,2(i)2 = -l), is completely 
defined by the condition that, in the center-of-mass (C.M.) system (P = 0), 
b&i) * pi is positive. 
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(c) Helicity amplitudes for two-body reactions 

Up to now, the axes ne(pt) were completely arbitrary. In a two-body reaction, 
since p1 + pz = p3 + p4 = P the 4-vector 

wfJ = 
-2%,PIYP2pP3a 

[@(s, t)]ll2 
(WpW@ = -I), 

is orthogonal to pi and h&i) (i = l,... 4). 
[@(s, t) = 0 is the equation of the boundary of the physical region (see the 

kinematics for two-body reaction given below). The minus sign, insures that, in 

the CM. frame, W = pGp s ( ~~~~~ = + 1), if one chooses for @l/s the positive 
determination.] 

In a two-body reaction, we choose for helicity amphtudes 

%(P,) = w (i = l,... 4), 

M A&,:A,& t9 4 

= < PS 3 L(3), $3 9 A, ; ~4 3 h(4), ~4 3 ;\4 I T I ~1, h,(l), ~1, A, ; ~2 , &2(2), ~2 , A,) 

where 

[The Lorentz transformations b,(i) are completely defined by their action on 
three Cvectors. In the following, we shall very often omit to precise the action 
of a Lorentz transformation on the first axis of a frame. Here, for example, we have 

G2(i) 41, = (Q(P& = ~~~~ $ ” wph2(iY.l ( 1 t 

It has been shown by Moussa and Stora (14) that it is possible to write this 
Lorentz transformation in the following form 

L2ci) = B (& - $) Q12@3(p) + qd[pl c’, W-4) 

where B(pJm, +p,Jmi) is the following pure Lorentz transformation which takes 
pi/mi onto pj/mi : 



246 COHEN-TANNOUDJI, MOREL, AND NAVELET 

[P] is an arbitrary Lorentz transformation which takes t’ onto P/# 

E’ = I - io, for i = 2,4, 
1 for i = 1, 3. 

Ql2(%(P) + 4iJ is the Lorentz transformation with positive trace which leaves 
P invariant, takes nz(P) = [P] ii, onto w, and n,(P) = [P] ii, onto 

qri = (P’ - p* - p * ‘“d- A p) 

x 
[ 
[P - (Ps - Pi>12 

P2 - (Pi - P32]-1’2 (i 1;; ; “,; f ;: :, 

(qii is in the 2-plane pi , pj and is orthogonal to pi + pi). 
We can now express the helicity amplitudes in terms of spinor amplitudes. 

From 

I P, UP), 8, A) = Jw(PNf I P, 8, A) and 

<P, UP), s, A I = wuPY-% <P, 8, A I = WL(P) WPSA I, 

with E = io, , we get 

It is useful to remark that our conventions for helicity amplitudes differ from 
those of Jacob and Wick (13) by the fact that we do not multiply in the phase 
factor (- 1)s-A for particle 2 and particle 4. The parity-conservation condition 
then reads 

M~s~r:~l~z(~, t, 4 = d- 1)c,(si+(\‘)M-~,-14;-~l-~~(s, t, 4, (11-6) 

where r] = ~~~r),r/~ is the product of intrinsic parities. 

D. Kinematics of Two-Body Reactions 

We now define the notations which will be used all along this paper for an 
arbitrary two-body reaction (Fig. 1). 



KINEMATICAL PROPERTIES OF HELICMY AMPLITUDES 247 

FIG. 1. 

s = (Pl + P2Y = (P2 + Pa)“, 
t = (Pl - Pa2 = (P2 - Pd2, s + t + u = C mi2, 
u = (Pl - Pb2 = (P2 - P212, E 

qj = {[s - (mi + mj)“][s - (mi - mj)2]}1/2, 

~~~ = [S - (mi + mj)2]1/2 : “threshold i, j”, 

& = [S - (mi - mj)2]1/2 : “pseudo-threshold i, j”, 

@(S, t) = St24 - s(mz2 - mJ2)(m12 - mS2) - t(m12 - ma2)(mS2 - md2) 
- (ml2 + mp2 - mS2 - m,2)(m12md2 - m22m2), 

@(s, t) = 0 is the equation of the boundary of the physical region. @(s, t) is positive 
inside this physical region. 

Oi = 
s -I- mi2 - mi2 

29 9 
i= 1,2t+j=2,1 

3 
i=3,4t,j=4,3 

Pij = 2912 , 

p12 = pzl = k : C.M. initial momentum, 
ps4 = pa9 = p : CM. final momentum. 

cos e s = 2% + s2 - S C mia + (ml2 - me2)(ma2 - md2) 
%2% 

, 

sin e s = (2s1’2~[‘(s~ t)11’2 
sp2%34 * 

2. PRINCIPLE OF THE METHOD 

A. Kinematical Singularities 

We shah say that spin-dependent amplitudes have no kinematical singularities 
if they have the same analyticity properties as the Joos invariant amplitudes 
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a&, t). Our method to find the kinematical singularities of the helicity 
amplitudes consists in writing them as linear combinations of the Joos invariant 
amplitudes with coefficients functions of s and t: 

(11-7) 

The kinematical singularities will then be the singularities .of C#(s, t). Let us 
suppose, for instance, that the C coefficients have a singularity (a square-root 
branch point, say) at s = s, ; let us suppose moreover that s = s, is also a 
dynamical singularity (for instance a threshold). Let 

be two determinations of M{,, . If C Ct@%cfc, happen to be determinations of 
another helicity amplitude A4tAt1 corresponding to other helicities {A’}, then 
FrAl = McAj + MtA,) has no kinematical singularity at s = s, . In fact, 

the discontinuity AF of F, is a linear combination of the dynamical dicontinuities 
kld2 9 with uniform coefficients ‘ZtA) = C$,) + CG, . 

In order to get expansions of the type (11-7) we use the covariance of the spinor 
amplitudes Eq. (11-2) and the expression of the helicity amplitudes as functions 
of spinor amplitudes (Eq. @I-5)), which leads to 

for any Lorentz transformation A. We finally get an expansion of the type (11-7) 
by using the Joos expansion (U-3) of “.IIA,A,:A,A,(ll~s~~~~~~~). The choice 
of A will be adapted to the study of each singularity in such a way that this 
singularity may be factored out as easily as possible. 

Before doing practical calculations, it is useful to try and guess‘what singularities 
we shall meet. For any singularity in s and/or t, it is possible to find a Lorentz 
transformation A such that this singularity does not appear in the Joos expansion 
of A? A,A,:A,A,(llps~~4~~~~). So, the only singularities one cannot avoid are 
those which appear in D@&,(i)). Now, the singularities of a Lorentz transforma- 
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tion which takes the standard frame onto some frame {nt) include those of the 
basis vectors ni of this frame. Thus, the kinematical singularities of the helicity 
amplitudes are at least those of the 4-vectors of the helicity frames, that is [cf. the 
definition of h&i) and +v in Section II-l-C-(b) and (c)J, 

qs, t) = 0, 

[(PI - P)” - m,2P2]l/2 = 0 
KP2 - PI2 - m22p2]l/2 = 0 1 y;2 = 0, 

[(p2 . P)” - m,2P2]1/2 = 0 i 
[(pa - P>2 - m,2P2]112 = 0 i 3& = 0. 

Furthermore, since h,,(i) changes sign when one changes the determinations of Y12 
(if i = 1,2) or 9, (if i = 3,4), one can guess that, in order to free the helicity 
amplitudes from kinematical singularities at Y1, = 0 or YM = 0, it will be 
necessary to associate MAsA4:lllp with MA,A,~-A,--l, or M,,8A,:Alll with M-.A8-A4:AlAz . 
On the contrary since the helicity 4-vectors do not have the @(s, t) = 0 singularity, 
this singularity will be picked up without associating different amplitudes. 

B. Explicit Choices for A. 

Let us suppose that A takes some frame R onto the standard frame. First we 
note that Ap * Gi = (lp * &(R) = p * q(R) so that the components of Ap in 
the standard frame are equal to those of p in the frame R. Secondly, all the frames 
which we use are such that the center of mass is at rest (P = 0). So, we choose 
in Eq. (II-4) [P] = A-l. Let us now, for instance, evaluate AL,,(l): 

420) = AB (& ---f -$- 
’ I 

P-tP 

sz,, M’> + 412 
I 

PI 
n,(P> - w 

zzz B cl’ 
( -p-t +) ALz+,[P] = B ii 

ALIz is thus the product of a boost by a rotation. Equivalently it is equal to 

For the general mass case, that is ml - m2 # 0, m, - mp # 0, 
m, - m, # ms - m, , ml f m, # ma + ma, we need two different expansions 
using two frames R. We write down the corresponding expansions in Tables I and II. 
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TABLE I 

EXPLICIT FORM A OF E!.Q. (11-S) CQRRBPONDING TO FRAME RI, 
WHICH IS ESPECIALLY CONVENIENT FOR THE STUDY OF KINEMATICAL SINGULARITIES 

AT 9 ,=OINTHEGENEIUL Miss CASE. 

Frame RI 
r(R) = P/9, 49 = w, G3 = aa 

1/2qp sin 0, 

e(Apl , Ap:) = I -i/2kp sin 0, 

WhP cos e, - 44 

AMl) = & 

e(Ap, , Ap:) = 

I 

1/2w,p sin 0, 

i/2kp sin 0, 

Wb,p cos 4 + q&) 

where R,,(y) = cos(v/2) - io, sin(rp/2) 

&,(2) = R&d Be 
&s(3) = JW,) & 
A-&(4) = R&t + 4 B4 

B,= mi+oi-m3 
( 
i= 1,2ttj=2,1 

’ [2mi(wi + mi)]lfP i = 3,4 f-) j = 4, 3 j 

Expansion A 

X (wl -I- clk)IM1i(ws - $k)wl P&t, (WIp COS 0, - wak)] Pz[u, (Wep COS 0, i- wsk)], 

where Q is a numerical coefficient, 
cl and By are the signs of Ml and M, . 
PJt, z] and P,[u, z] are polynomials in t and z, and in u and z, respectively. 

3. GENERAL-MASS CASE. KINEMATICAL SINGULARITIES AT @(s, t) = 0 

Since @(s, t) = 0 implies 1 cos 8, 1 = 1, the terms which are singular at 
@(s, t) = 0 are cos (8,/2) and sin(eJ2). Using the definition of the D matrices, 
(Eq. II-l), we evaluate the power of these quantities in expansion A [Eq. (11-9) of 
Table I; we would get the same results with expansion B]: 

M A&:A& = C sin(8,/2)’ a,+A*l+la,-A,l+l~~M,I+~~*l 

x c0s(e,/2) I~~-n,l+l~~+~~l+l~~~+~~*l qs, t), 

where R(s, t) is kinematically regulara at @(s, t) = 0. 

8 From now on we shall use the following terminology: “kinematically uniform at...” for 
“without a kinematical branch point at...“, “kinematically finite at...” for “finite in the absence 
of a dynamical infinity at” ,“kinematically regular at...” for “without either a kinematical branch 
point or a pole at...“. 
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TABLE II 

EXPLICIT FORM B OF EQ. (11-8) ~RRESPONDING TO FRAME R,[, 
wHIcHIs ESPECIALLY CONVENIENT FOR THE STUDY OF KINEMATICAL fhK3ULARlTB 

AT Yle = 0 IN THE GENERAL MASS CASE. 

Frame RI1 
t(R) = P/W, n,(R) = w, n,(R) = qa4 

1/2o,k sin 6, 
e(llp,,p,j = 

i 

- 1/2w,k sin (2, -+ 
-i/2kp sin e, e(Ap, , ApJ = 

I 
i/2kp sin 0, 

1/2(WlP - wsk cos e,) W~P + d cos 0, 

AJAU) = R,(-4) B, 

&,C4 = R,(--8, + 4 Be 
&z(3) = & 
&e(4) = R,W 4 

Expansion B 

x 6% + l P)WW* + r,p)lMsl PJt, (01p - ask cm e,)i P&d, (cog + o,k cos e31 

where Q’ is a numerical coefficient, 
cl and 4 are the signs of Ml and M, . 
PJt, z], PJu, zl are polynomials in t and z, and in I( and z, respectively. 

Let 

~8 = I 4 - A, I + I A, + A, I + I Ml I + I M, I 
= I A, - A, I + I A, + A, I + I Ml I + I A, - A, + 4, + A, - Ml I; 

L4e and 9J are obviously positive integers. 
Any dummy index (A3 , A,, MI) appears twice in the four terms of both J$ and 4, 

so that, if one varies the value of one index by one unit, J$ (resp. @) is changed 
into d + 2, d or d - 2 (resp. S@ + 2, B or a - 2). Now, for A, = --&, 
A, = h, , MI = 0, SZZ’ reduces to ( h, - h, - h, + h, I and cannot decrease, and 
for A, = h, , A, = --h, , MI = 0 .@ reduces to 1 A1 - h, + hs - A4 1 and cannot 
decrease. 

595/4%-4 
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Thus 
d mill= IA- PI, ~mtn= Ix+ pl 

(A = x1 - AZ, P = x2 - &I, 

and other values of & and B differ from these by positive even integers. Hence: 

(II-1 1) 

where fiA,A,:A,A, is kinematically regular at @(s, t) = 0. 
This result was already :known (7), (8), although, to our knowledge, it -had 

not been proved. What we now know, in particular, is that the convergence domain 
in the cos e9 plane of the partial-wave expansion of the helicity amplitude 

(where m = Max(l A 1, I p I) and da,,;,l,, differs from M{~~P~AIAP by numerical 
factors) is identical to that of the expansion 

Namely, via a well-known theorem of Szego [Theorem g.l.1, p. 243 of Ref. (ZQ], 
on the domain of convergence of expansions in terms of orthogonal polynomials, 
the. convergence domain-of. MA3hp;A1An is completely characterized by dynamical 
singularities. 

4. KINEMATICAL SINGULAR&ES AT THRESHOLDS AND PSEAJDO-THRESHOLDS- 

GENERAL MASS CASE 

A.. Types of singularities at s = (m, f rn$ and s = (mS f m4)2 

Using Expansion A or B one finds that the following terms are singular at 
sP12 = 0 and YM = 0. 

wi f m, - pij Cal B8i(Bt): = ( [2mj(wi + mj)]1/2 
2at 

1 ( 
oi + mi -I- Pii -24 

= [2mi(q + m,)]l12 1 ’ 

wc’+ mj = W2 + mi + mjW2 + mj - m3 i = 1,2-j = 2, 1, 
2s1/2 , i = 3,4 +-+ j = 4, 3. 
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If we choose, as we shall always do, the positive determination of $I2 in the 
neighborhood of s = (mi & m,)2, one finds that 

for s = (mi + mj)" wi +mi = 2mi, 

for s = (mi - mi)" 
I 
oi + mi = 0 if mj > Wli, 
Wi -+- mi = 2mi if mi > mj, 

Summarizing, one sees that, if one turns around s = (mi + mj)" using the path 
shown in Fig. 2), 

x /; r 

s-o 
., ,; 
‘..._...’ (mi+ miJ2 

FIG. 2. 

( 
Wi -I- mi - Pij 

) 
24 

[2mi(wi + m,)]l12 

is changed into 

( 
wi + mi - Pij 

1 

-24 

[2mi(OJi + m,)J112 

and that, if one turns around s = (mi - mj)” using the path shown in Fig. 3, 

X fir‘> 

s=o 
‘... J 

..,_ ,_:’ (mi -mj j2 

FIG. 3. 

( %+mi--Ppij 
1 

2A( 

[2mi(wi + rni)]lla 

is changed into 

( 

oi+md-pij 

) 

-2,Q 

[2mi(wi + m,)]l12 if mi > mj , 

%+%-Pi* 
(-l)""‘ ( [2mi(UJi + mi)]1~2 1 

-2A* 

if mj > mi. 

(b) cos O8 and sin 8, are singular and behave like (9129&1. 

(c) d*(B,) is singular since cos OS is. 
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B. Kinematical Branch Points at Thresholds and Pseudo-Thresholds. 

(a) Thresholds 

s = (ms + ma)z. It is easy to see that in expansion A [Eq. (H-9) of Table I], 
all the terms which appear in the Joos expansion are regular at s = (m3 + ma)“. 

Now, if one turns around s = (m3 + m4)2 using the path shown on Fig. 2, 
the following changes occur: 

Then, using Expansion A one sees that4 

--2A2 

x ( 1 ! 
04+m4-p 

1 

-81, 

Pm,@, + m4W2 
d”“(O,)$ d”‘(BJ;; *** 

is changed into: 

A2AJA4iA1A2( - ys4) = ( -)s2--12+s2+A2 sin 
g, * n 

(~ 
-1h4 

2 1 

24 
1 ( 

w,+m4-p % 
[2m4tw4 + mWz 1 dS”(fls rf: r)-“t d”(6, f a:,’ ... 

(the dots stand for quantities which are kinematically regular at s = (m, + m4)s). 

It is then easy to find 

s = (ml + m2)2. Turning around s = (ml + m2)2 along the path shown on 
Fig. 2 and using Expansion B, [Eq. (II-lo) of Table II] one finds in the same way 

~A2A*;A1A2t- Vl2) = * 771&fA8A4:- A,A,b12h 712 = (-)s,s2--p. (11-I 3) 

4 When we study the behavior of a function f  in the neighborhood of a square root branch 
point z = 0, we write for conveniencef(zlla) andf‘(-zl@) for the two determinations f1 and jr1 
off at point z. 
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(b) Pseudo-thresholds 

The reasoning is quite the same. One finds 

s = (m, - m2)2 

if m2 >m, fi*&/ll&12) = 7?12H281 fiA&-Ar&12) 

. (H-15) 
if m, > m2 J%Al:A1A2(- h2) = 7h2(-)28a &*A,:--I,A*(Y512) 

C. Consequences of Parity Conservation 

From formulas (II-12)-(H-15) it is possible to find kinematically “uniform” 
linear combinations of the A&. We define 

A WPhb = fiAgb&AIAa -I- r/34fi-A&,1, 

+ %2[~A&-A,A2 + 7734(-h 9 -h2) %g-A4:-A1-l*l’ 
B = fiA9&A1A2 - 1 k3v1~2 7134M-A&A,As 

+ 7?12v@A*A4;-AI-n, - q34(--xl 3 -A21 fi-As-A4:-AI-x21’ 
1 A 

c w4w2 = MA~A~:A~A~ + 1134M++:~~~2 

- %2[~AsAr:-+Aa - r/34(-h 7 -X2) ~-A&Al-A*l’ 

= ~ABA1:AIAl - A D bkv2 ~~~~M-A~-A,;A,A, 

- 7?12[~A&:-A,A, + ?134(--hl 7 --h,) ~-Ag-Ar:--ll-Aal, (11-K) 
where 

7?34(--h, 9 -h2) = (-)%44-A. 

Then AA8A4A1A2 y T~~BA,~,~,A, y ~~~~~~~~~~~ , and ~~~~~~~~~~~~~~ do not have any 
kinematical branch point either at s = (m, + m4)2 or at s = (m, + m2)2. 

Now, parity invariance [Eq. (H-6)] implies relations between &.?-+x,-A,-A, 
and ~~~~~~~~~ , namely, 

&+++A a = v(- I)z+i+AJ A2~*14+2 , 

where 7 is the product of intrinsic parities. 



256 COHEN-TANNOUDJI, MOREL, AND NAVELET 

Hence 

So, by associating only two different helicity amplitudes, it is possible to write 
down amplitudes free of kinematical branch points at thresholds. 

Let 

TABLE III 

AMPLITUDES FREE OF KINEMATICAL POINTS AT s = (ml & mg)* AND s = (ma f mp)20 

Intrinsic parity 

Configuration 

BB+BBor 

BF --t B’F’ with 
mB < mF and mB’ < mp’ 

BB-+FFor 
BF + B’F’ with 

mF > mg and mp’ < mB’ 

FF+BBor 
BF + B’F’ with 

mF < mB md mp’ > mB’ 

FF-+FFor 
BF + B’F’ with 
mF < mB and mp’ < mB* 

a .G/ and I are defined in Eq. (U-17). 
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if 7j=+l, @%4 = 42, 
934 = ala, 

if 7=-l, -44 = a12 9 
%4 = 42 * 

Thus, if 7 = +1 &ad or && and ~2~Z%4 or %2), (11-18) 

if 7=-l 6-4W%4 or 43 and PGX~~ or a12>, 

do not have any kinematical branch point either at s = (m, + m4)2 or at 
s = (ml + mz)z. 

We easily derive results analogous to (11-18) for the case of pseudothresholds, 
using (11-14) and (11-l 5). The amplitudes kinematically uniform at s = (ml & m.J2 
and s = (m, & m4)2, are exhibited in Table III. 

D. Kinematical Poles at Thresholds and Pseudo-Thresholds-General Mass Case 

We now look for the possible kinematical poles and zeros at thresholds and 
pseudo-thresholds, which means that we look for the behavior of the helicity 
amplitudes near Y12 = 0 and P”, = 0 assuming that the Joos invariant amplitudes 
are finite and nonzero. 

(a) Near YS4 = 0 using Expansion A (Table I), one sees that 

(i) The elements of Bi are finite (their moduli are close to unity), 
(ii) The semibivectors are finite. 

Moreover, cos OS a (Y&l, cos(0,/2) and sin(BJ2) cc (LQ-1/2. d”(8) being a 
homogeneous polynomial of degree 2s in sin(8/2) and cos(8/2), one finds that: 

a&A1A2 a -$- m8p ( 1 m34 = s3 + s4 - Maxtl X I, I E.L I). (11-19) 
34 

(b) Near Yr2 = 0 using the same reasoning on Expansion B (Table II) 
one finds 

Jc&A1A2 a $, %= ( ) ml2 = sl + s2 - M=tl X I, I EL 1). (11-20) 
12 

It is quite easy, then, to put together these results and those concerning uniform- 
ization at kinematical branch points (Table III). For instance let us consider 
the case BB + BB, 71 = + 1. Near PI2 = 0, J;s,, can be written 

%4 + A49i2 
p-%2 ’ 

12 
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where both Q and /Ja4 are kinematically regular at Ylz = 0. Now, since J& is 
kinematically uniform at 9& = 0, 

so that, in any case, 

P24 = 0 if m,, is even, 

olgp = 0 if ml2 is odd, 

,Fp;nG@& is kinematically regular at Y1;2 = 0. (We have used the notation N* 
to denote N if N is an even integer and N f 1 if N is an odd integer). 

Other cases are treated on the same way. All results are summarized in Table IV, 
together with those which are related to the behavior at @ = 0 [Eq. (II-II)] and 
at s = 0 (see below). 

5. KINEMATICAL SINGULARITIES AT s = 0 

We now study a possible singularity of helicity amplitudes which does not 
appear in the basis-vectors of the helicity frames, but in Expansions A and B. 

A. Behavior of the Boosts Bi near s = 0 

We have 

(  

mi+mi--Pij 

2ai 

)  (  

% - Pij 4 
-1 ( 

mi2 - mj2 + S - SpCj 4 = r 
[2mi(02 + mi)]l12 mi 2.G tarn. I )- 

The behavior of this quantity near s = 0 depends on the determination of S$j . 
For small ] s 1, Yij = -~(1 mi2 - mj2 ] + O(s)), where E = f 1 depending on 
the way chosen to define the cuts of 9ij in the s plane; for instance, E = +l 
if Yij is cut as shown in Fig. 4. 

s =0 (mi-mi)* (mi + rng2 

FIG. 4. 

Let us now define cii = (mi - +)/I mi - mj ] ; then 

[(q - pii)/mi] cc (s~/~)--SS~~. 

B. Behavior of cos 8, 

cos e = s(t - u) + h2 - m22>(m22 - ml21 
s 

%2%4 

(11-21) 

(H-22) 
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TABLE IV 

Notations: 
A = Al - A,; /&=&-Ah,; qle = (-)v~2-~; qa4 = (--)ra-%+~ 

v  = v1q2~9~4 : product of intrinsic parities. 

ml2 = s1 + sa - Max(l h I, I P I); ma4 = sa + s4 - MM1 A I, I I” I) 

N+ = 
I 

N if N is even 

Nhtl ifNisodd 
-pi, = [s - (rni + m,)y h = b - &--%w* 

Amplitudes free of kinematical singularities in the general mass case: 

BB-t BBor 
BF + B%’ 

‘I = +1 

mF > mB 

mF’ > mB’ 
7) = -1 

BB-tFFor 
BF -+ B’F ‘I = +1 

mF > mB 

mp’ < mB’ 
1) = -1 

FF+ BBor 
BF-tB‘F 

‘1= +1 

mF<mB 

mF’ > mg’ 
1) = -1 

FF+FFor 
BF + B%’ 

?I = +1 

mF<mB 

mF’ < mB’ 
‘I = -1 



260 COHEN-TANNOUDII, MOREL, AND NAVELET 

then at 
s - 0, cos 8, = E12Eg4 + Ots) (11-22) 

(if Y12 and 9& are cut in the same way). 

C. Behavior of the Semibivectors 

e(&, , LI~~)~ = e12 + e22 + ea2 = f(t) : a polynomial in t, 

t 
e(Llp2 , (lpJ2 = ei2 + ei2 + ei2 = g(u) : a polynomial in 24. 

In the frame RI for instance, ei2 + e22 = $mlzp2 sin2 es which is mute, regular, 
and, in general, nonzero at s = 0; thus e3 is also finite and regular at s = 0. 
So is e; for the same reason. 

D. Kinematical Behavior at s = 0 

Using expansion A (expansion B would give the same result), one finds that 
M ,,g14ZAllg behaves near s = 0 as 

--$a& + Ed2 + Gil - =2*X, 

+ IA, + ~1242 I + I4 - El2E2A I + =12(W + 442)W2). r 

Using M1 + M2 = X1 - h, + A3 + A4 , we write this exponent in the form 

I A, + 92~244 I + ~~12642 + ~1242) + IA, - ~12'2ah I + l ~12(& - ~12~24&), 

which is a nonnegative even integer which reaches the value zero for A, = -ELSE& 
and A4 = Q~E& . Thus, the helicity amplitudes do not have any kinematical 
singularity at s = 0, whatever the spin configuration may be. 

However 

(Eq. (11-11)) is singular at s = 0 since it behaves like 

Now, since in the case BF -+ B’F’ (and in this case only) 1 ;t - p ( and 1 X + p 1 
differ by an odd integer, it is impossible in this case to free the helicity amplitudes 
from their kinematical singularities simultaneously at @(s, t) = 0, Y12 = 0, 
9= = 0, and s = 0. 
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To summarize, JS&, and S& [Eq. (I&17)] behave near s = 0 like 

(S1/2)-(lll+lrl)[or(s, f) + (,yl/7-(l~l.Irl) fl(6(s, t)], 

where CW(S, t) and /I($, t) have no kinematical singularities at s = 0. 

(11-23) 

6. GENERAL MASS CASE: SUMMARY AND CONCLUSIONS 

We summarize the results obtained on the kinematical singularities of the 
helicity amplitudes in the general mass case. We write down in Table II-4 two 
amplitudes Fi8A,ihlh2 and F&,lhlA2 which do not have any kinematical branch 
points, poles and zeros. However, in the case BF -j BF we must add some remarks. 
Looking at Table IV, one sees that: 

(a) There remains a kinematical square root branch point at s = 0. 

(b) The regularization at 9x2 = 0 and 9& = 0 depends on the choice 
of the determination of s’/~. The results given here are obtained with the deter- 
mination of s1j2 which is positive near s = (mi f mi)2 (see Fig. 2 and 3). With 
the other determination we would get slightly different results: since the helicity 
amplitudes themselves are kinematically regular at s = 0, it is easy to relate 
F,f3~,~A,~,(-~1/2) to F&,:l,l,(s1/2); we find: 

These relations can be interpreted [as already done by Y. Hara (7)] as a general- 
ization of the Mac Dowell reciprocity relation (15). In fact, Eq. (11-23) provides 
more information than this generalized Mac Dowel1 relation (11-24) since it gives 
the actual behavior of R.H.A near s = 0. 

If parity is not conserved, we have, in general, iV linearly independent 
amplitudes utl/* , where N = 17,(2x, + 1). Parity conservation implies relations 
between the u’s which are still unknown in the general case, but can be easily 
expressed (Equation (11-6)) in terms of helicity amplitudes. The corresponding 
relations between the R.H.A take on the same form, namely 

(II-29 

However, we still have too many amplitudes, since for a given set of X’s, we have 
defined two combinations of il??+ and ii?+‘ or fi,+,+ . But it is obvious, from 
the definition of the F’S, that 
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The second identity expresses parity conservation. Taking into account these 
relations, one easily verifies that when parity is conserved, the right number of 
linearly independent amplitudes can be chosen out of the set of 2N regularized 
helicity amplitudes. 

As already pointed out, the same kind of regularization procedure can be 
applied if parity is not conserved. Uniformization at thrisholds and pseudo- 
thresholds could be explicitly achieved from Eq. (II-16), for four combinations 
of &,A< , &-A,& , i%,Ai 9 i@-,,+ . Behavior at s = 0 would again depend on 
the spin configuration and on the value of ) A 1 + 1 EL. I. Kinematical poles would 
then be canceled out by the same type of powers of v12, & , vS4, #34 and s112, 
since the orders of possible poles are functions of 1 h 1 and 1 p I only. We would 
now arrive at 4N R.H.A, F,ftgiAlhp, i = 1,2,3,4. It is easily verified on (11-16) that, 
for each i, FL,,,ni , F&,,, , ,FT++ are simply related to F,fn, so that N linearly 
independent amplitudes F&,,4zA11a can be selected out. 

The results of this section devoted to the regularization of the helicity amplitudes 
can now be summarized as follows: 

(1) New functions F&) are defined (i = 1, 2 if parity is conserved, 
i = 1,2,3,4 if not). They are related to the Joos amplitudes uc,cS through 
polynomials in s, t, u.~ 

(2) From the set of functions Fi’,,) , one can pick out a set of linearly 
independent amplitudes, which we denote 9(,,) . The result of this section can be 
formally written as 

(11-27) 

where the Cf,$ coefficients are polynomials in S, t, ZL~ 

7. PARTICULAR CASES: EQUALITIES BETWEEN EXTERNAL MASSES 

Whenever two or more kinematical singularities coincide, the general 
study does not apply. For instance, one can see that in elastic scattering 
(ml = m3, m2 = m4, Sp, = S&), the general reasoning using expansions A and 
B fails since the third component of the two involved semibivectors are singular 
at 91y;2 = 9;, = 0. It will therefore be necessary to find another expansion. 
The particular mass configurations and the kinematical singularities which, 
correspondingly, need a special study are shown in Table (V). Results are 
summarized in Tables VI-X and details on their derivation are given in 
Appendix A-I. 

5 (Ifs corresponds to a BF state, s has to be replaced by sl/* in this statement). 
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TABLE V 

KmEMATIc SrnGuLARnEs ANDbfASS~NFIGURATIO~ 

Kinematical singularities 
I ,icuk~ 

mass configuration 

ml = mg 

me = ma 

(see Table VI) 

m, = m, 

(see Table VII) 
ma f m 

ms = ml 

(see Table VIII) 
ml f ma 

inI = me = m 

mg = m4 = m’ 

(see Table IX) 
m # m’ 

ml = m2 = m, = m4 = m 

(see Table X) 

s=o Y12 = 0 Y,, = 0 

X X 

X X 

X X 

X X X 

X X X 

(1 The symbol x indicates the singularities which need a special study in the corresponding 
particular mass cotigurations. 

TABLE VI 

AMPLITUDE FKEE OF KINEMATICAL SmouL.4arrnk7 FOR 

m, = m,; m, = m,; m, # m,; r) = +l; s1 = s3 = s; s2 = q = s’. 
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TABLE VII 

AMPLITUDESFREEOF KINEMATICALSINGULARITIES FOR ml = m, = m; m8 # m,; sl = sp = sin.a*b 

Values of the 

parity configuration 

a’ b’ 

A, + A, + CL even 
q = 3-l @J- m- (2.Q+ - 1 ml, - 1 

q = -1 (q*)+ - 1 m+ - 1 1.2 q3- “la 

& -I- Ar + p odd 
9 = -tl @J+ - 1 “la (2sJ m+ - I 12 

q = -1 @J- m+ - 1 13 (qJ+ - 1 “la 

D c, d, y, 6 are defined as in the general case (See Table IV). 

b k = &(s - 4ms)‘la. 
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TABLE VIII 

AMP-ES FREE OF KJNEMA~CAL SINGULARITIES FOR: 

mb = m, = m’ ; ??I, # ??I,; sa = s, = sf.asb 

Values of the 

parity configurations 

C’ d’ Y’ 6’ 

& + X, + heven 
7) = +1 &,)- mid (q)+ - 1 m+ - 1 84 

q = -1 OS,)- mii (2s,)f - 1 m+ - 34 1 

& + Aa + A odd 
7 = +1 (by)+ - 1 q4 (2s,)- m+ - 1 M 

1) = -1 (a,)+ - 1 ms; (29- m+ - 1 54 

(1 a, b, by and j are defined as in the general case (see Table IV). 

b p = &s - 4m’2)1/a. 
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TABLE IX 

AMPLITUDES FREE OF KINEMATICAL SINGULARITIB FOR 

m,=m,=m,m,=m,=m’,m#m’; s1 = s2 = sin; SQ = S& = Sf.a 

Value of the 

configurations 

a b d OL B 6 

7) = +1 0 mla “i 0 m+ - la 1 m+ - Sl 1 ZAx, even 
q = -1 --l ?n+ - 12 1 mL -1 mla m+ 81 - 1 

.?A+ odd 
7 = +1 -1 ml2 Ml4 -l m+ 12 - 1 rnz& - I 
7 = -1 0 m+ - 12 1 mica 0 mls m+ 84 - 1 

a k = a(s - 4mz)1/8, p = *<s - 4m’y; 7) = +l for BB+BB, FF-+FF and FP-FP; 

q = -1 forBB-+FFandFF+BB. 

TABLE X 

AMPLITUDE FREE OF KINEMATICAL SINGULARITIES FOR 

mI=m,=m,=m,=m,~=fl;s~=s,=s,=s~=S 

.?I& even: .Q odd: 

(P”“/s”“) M,g4al~s 

p = $(s - 4ma)‘la 

n = 2s - Max(l h 1, I p 1) 
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III. CROSSING MATRIX FOR HELICITY AMPLITUDES 

tit M$,~A,A,(~~ t, 4 and N$liAqhe (s, t, U) be, respectively, the helicity amplitudes 
for the two reactions: 

1 + 2 + 3 + 4 with momenta pi , helicities hi 

and 

4 + 2 + 3 + i with momenta qi , helicities hi , 

as defined in Eq. (11-5) from the corresponding spinor amplitudes 
@i$A,;A,A,(~3~4 ; plp2) and JC&,;A,A,(q3q1 ; q4q2). For suitable analytic propehs 
of the spinor amplitudes, these hehcity amplitudes are initially defined as analytic 
functions of s, t, u in complex neighborhoods S+ and T+ of the corresponding 
physical regions. The index + means that the s (resp. t) physical region (s and 
t real), are reached within S+ (resp. T+) from the upper half s (resp. t) plane. 
The purpose of this section is: 

(1) to analytically continue AP from T+ to S+, 

(2) to find the relation between MS) and the analytic continuation of Mft), 
(crossing matrix). 

1. CROSSING PROPERTIES OF THE SPINOR AMPLITUDES 

The crossing properties of the spinor amplitudes on the mass shell have been 
proved by Bros, Epstein, and Glaser (5) in the framework of quantum field 
theory (L.S.Z. formulation). Their proof holds for four particles with arbitrary 
nonvanishing masses, whenever there exists a strictly positive minimum mass 
for all states different from the vacuum. We shall first briefly recall their results: 

(4 N&,:a,~,(~3~4 ; PIPS) and ~!&,+&3ql ; qld being boundary 
values of the same function J/i! AsAl:A1A2(k3k4 ; k,k,) with initial analyticity domain A 
in complex k, space, k, + k, = k, + k, , the holomorphy envelope of d always 
contains a connected open set of the mass shell manifold (ki2 = mi2) which connects 
the physical regions of the two reactions. In other words, @&.+,a,(q3q1 ; q4q2) 
can be continued from the physical region of the t reaction to a point q4 = -p4, 
92= P2,93= P3,41= -P1, where (pl , p2 , pa, p4} belongs to the s-physical 
region, and qt2 = mi2 all along the continuation path. 

6 Note the order of the indices and the momenta in spinor amplitudes. It refers to the order 
in which fields are written down in the definition of spinor amplitudes as Fourier transforms of 
vacuum expectation values of time-ordered products. 

59514fV+s 
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Furthermore, one knows that for any set {Ai} of spinor indices, 

where u(P) = 1 if 1 and 4 are fermions, and u(P) = 0 in all other cases. 

(b) A continuation path can be explicitly defined by its image in the space 
of invariants (s, t, u; s + t + u = xi mi2}: one first connects the region T+ 
to the region U- (u-physical region reached from below) by a domain 
Dns+(sl) : {sl < 0, Im t > 0; 1 t 1 > R(s,); 1 s - s1 1 < E(S~ , t)}, and then U- to S+ 
by a,-(t,) : {tl < 0, Im s > 0; I s I > R(t,); 1 t - t, I < r(t, , s)}. Finally, one 
chooses a path C in the union of 

T+, Qn,+(s,), U-9 Q,-(t,), S+. 

Any path r in {qi} space, qi2 = mi , 2 the image of which is C can then 
be taken to analytically continue JH tt) from a t-physical point {qi} to a point 
{ - p4 , p2 , ps , - pl}, {p,} in the s-physical region. 

2. ANALYTIC CONTINUATION OF THE HELICITY AMPLITUDES 

We know from Section II that the helicity amplitudes M#s, t, U) are analytic 
functions of s, t, and u, (s + t + u = xi m?), in the image of the analyticity 
domain of the spinor amplitude .M&,(qJ deprived from the sets @(s, t) = 0, 
Yal = 0, Ta2 = 0. Yal and Td2 are defined in the t-channel as Sp, and &, are 
in the s-channel and correspond to the threshold and pseudo-threshold singularities 
in the t-channel. 

M{$(s, t, u) is formally defined [Eq. (H-5)] by 

~~~;c~, 4 4 = ~(~231~~ Jtt:tlkli), (111-2) 

where 9(L,,) involves the four helicity Lorentz transformations corresponding 
to the t-channel.’ 

In order to continue A4u) from T+ to S+, we have to show that the analyticity 
domain of JP) which connects the two physical regions contains an analyticity 
domain for 9(&). 

7 When we analytically continue outside the physical region, the helicity frame becomes complex, 
so that the full Lorentz transformation from the standard frame to the helicity frame is no longer 
determlned (Sec. 11-1-A) by (L(p), L+(p)), but by some pair of 2 X 2 matrices (t, L’), L’ = L+(p*). 
We shall be interested only in the matrix L and its analytic continuation, which we shall still call 
a Lorentz transformation, although it is only part of it. 
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For the sake of definiteness, let us consider what happens for particle 1. In the 
t-physical region, the part of B(&,) relative to this particle is the matrix DB~(L81(1)), 
where &(I) is the helicity Lorentz transformation: 

where W, is defined by: 

p31 = p42 = pt = 41 + 93 = q2 + 44. 

All these definitions are t-channel analogus of Eq. (11-4). 
The Lore& transformation L,,(l) is singular wherever the basis vectors of 

the helicity frame associated with particle 1 are. It is singular for @ = 0 (cf. the 
denominator of W,) and 9& = 0 [cf. the denominator of h&l)]. Then, L,,(l) can 
be analytically continued along any path which avoids these singular points, 
and the result of this continuation is the same (up to a sign, as it will be seen below) 
for all paths which lead to the same determination of 9& and W2. 

Of course the same argument holds for the other particles. For bosons, a sign 
ambiguity is of no consequence since the matrix elements of P&(i)) are 
homogeneous functions of degree 2si , of the matrix elements of L&i). For 
fermions, D(&(i)) may depend on the path followed in qi space, just as h,(i) 
does. L&i) can be written as u * Q(i)/[Q2(i)] 1/2 where the object Q(i) has components 
which have singularities of the type PI2 and YS1 or Y42 ; L,,(i) has one additional 
possible singularity, which is not a singularity of the basis vectors of the helicity 
frames, namely Q2(i) = 0, which leads to the above mentioned sign ambiguity. 
This last equation is a relation between the components of the qi’s which cannot 
be expressed as a condition on the invariants. As a consequence, 2 paths I’, and I’, 
in qi space, on the mass-shell, which have the same image C in the invariant space 
but which lead to opposite values of [Q”(i)]ll” are not equivalent for Da@&). 
However, we shall prove the following. 

LEMMA. The analytic continuation along a path P of the tensor product 
L&i) @ L,,(j) only depends on the image C of I’, and not on r itself. 

Consequence. Since there are always an even number of fermions involved 
in a reaction, different paths r with the same image C lead to the same deter- 
mination of n,9 B”~(LSl(i)). 
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Proof of the lemma. We write, as in Eq. (B-4), 

where 

4(i) = q42 

E’ = 1 

for i = 4 or 2 and q(i) = 431 for i = 3 or 1 

for i = 4 or 3 and El = --ia, for i=2orl. 

We consider Xii = &(i) @ &(j), 

(a) Xij is bilinear in [P,] so that the sign ambiguity of [PJ is irrelevant; 

The singularities of B in q-space can be expressed through functions of the 
invariants only, so that B is the same for different F’s which have the same 
image C. 

(c) We can always choose for [P,] a Lorentz transformation which takes 
W, onto W, , so that 52, is a Lorentz transformation, in the 2-plane orthogonal 
to Pt and W, , which takes n,(P,) onto q(i). Then J&(j) = KG,,(i), where K 
represents a pure Lorentz transformation which takes q(i) onto q(j) (K = +l 
if i and j belong to the same 2-body state). The singularities of K are again 
expressed through invariant functions of the qi’s, and Xij is linear in K and bilinear 
in Q,,(i) so that the sign ambiguity due to Q&i) is also irrelevant. 

Conclusion. Taking in the definition of the analyticity domain of Bros, 
Epstein, and Glaser (5) (see Section III-l), large enough values of R(s,) and R(t,) 
in such a way that any path C also avoids all kinematical singularities, any path r 
in qi-space with image C is in the analyticity domain of the matrix 9(&)!$ 
of Eq. (111-2). An explicit choice for C will be exhibited in Section 111-3-A. 

3. CROSSING MATRIX FOR HELICITY AMPLITUDES 

Labeling with the index c the “crossed” quantities, that is to say quantities 
which have been continued from the t-physical region to the s-physical region 
along a path r, we formally have 
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The crossing property (III-I) of the spinor amplitudes then leads to the following 
crossing relation: 

M& t, u) = (qcp) c 9-1c(L,1);;)) qL&} M&, t, 24). (111-4) 
{A) 

More explicitly, the matrices L&&J and B(L,,) are, from Eq. (I&5), 

The crossing matrix in Eq. (111-4) is then 

The explicit calculation of 2 therefore reduces to that of the tensor product 

$ DyL$(i) L,,(i)). 

We now show that L$(i) L,,(i) can be determined, up to a sign, by considering 
the basis vectors of the associated helicity frames. We shall then write the crossing 
matrix 2, the overall sign being determined directly in Appendix A-II. 

A. Determination of L;:“(i) L,,(i), up to a Sign 

To complete the definition of helicity amplitudes outside their respective physical 
regions, we define YS, , FJ2 , Sp, , 9& as analytic functions of s and t in the 
following cut planes: 

- the t-plane is cut from 

Minth - da, Cm2 - md2> 
to 

Maxth + m112, (m4 + +d”> 

and 9& and 9& are positive for large real t; 
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- the s-plane is cut from 

Min(h - m212, Cm3 - m412) 
to 

Max(h + m212, Cm3 + m412) 

and Y12 and Yz4 are positive for large real s. 

- The Q-plane is cut along the positive real axis and Pi2 is taken with a positive 
determination in the physical regions. 

- Finally, in order to get the usual determination of the scattering angle, 
0 < 6 < 7r, we are led to define s1j2 (resp. t112, u1i2) with a cut along the 
positive real axis and a positive determination in S+ (resp. T+, U+). Then 
sin 8, = ~s~I~@~~/Y;~Y~~ is 20 in S, as well as sin et and sin 6, in T+ and U+, 
respectively. 

For the sake of definiteness, we shall consider the planes of the variables s, t, U, 
and @ with the cuts and determinations of the kinematical functions which have 
just been defined. Let us exhibit a path C in the Bros-Epstein-Glaser domain 
which allows the analytic continuation of the helicity amplitudes. 

Let p be a large real parameter. We start from M, : t = 4p, s = -2p, 
u = Cc mi2 - 2p in T+. 

We have a first arc: 

t = p(1 + 3e+), s = -2p 

u = C mi2 + p(1 - 3e@), 0<9)<n. 
i 

ending in MI : t = -2p, s = -2p, u = xi mi2 + 4p in U- and a second arc 

t = -2p, 

s = p(1 - 3e-@)‘), 

24 = C mi2 + p(1 + 3e+), 
f 

ending in h4, : t = -2p, s = 4p, u = xi m12 - 2p in S. @ is a third-degree 
polynomial in s, t, U, which for large p may be approximated by 

@ 52 2p3(9e2i” - l), 0 < CJI < ST on the first arc, 

@ ef 2p3(9e-2ip - I), 0 < q~ < rr on the second arc, 

so that @l/2 goes back to a positive value in S+ as it should. Also, since we have 
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never crossed the real s or t axis, spij and 9’& have not left the cut planes where 
they have been defined. 

The image of C in the s, t, U, and @ complex planes are shown in Figs. 5(a)-(d). 

d 

FIG. 5. 

All functions being now well defined all along the continuation path, we turn 
to the analytic continuations of the r-helicity frames. In S+, these continuations are 

Basis-vector 0. pi/mi if i = 2, 3; - pPi/mi if i = 4, 1. 

Basis-vector 2. - W, for i = 1,2,3,4 because we have verified that we 
ended with a positive determination of Wz, and furthermore, 

(5tupo44Y43P43u~c = -52upoP1”P3~P3*. 

Basis-vector 3. 

Hal = -2 mi”(p3 - PI) - (Pi . (PI - P3) Pi 

miT(i) , 

where T(i) is the analytic continuation of FM for i = 1, 3 and r18 for i = 4,2. 
This defines, up to a sign, the analytic continuation of L,,(i). Finally, we recall 

that 
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(a) i = 4 or 1 (crossed particles) 

Let us consider the Lorentz transformation P’(i) = Lz;l(i) l;,(i). From the 
preceding study, we have 

n;(i) [resp. n;(i)] is the 3-axis [resp. l-axis] of the transformed frame. Note that 
the time axis, (and the 2-axis), of the standard frame are reversed, so that one 
needs a pair of unimodular matrices to specify P’(i). Let L?‘(i) be the 2 x 2 matrix 
which accompanies Z(i) in the definition of the complex Lorentz transformation 
(9(i), P(i)).* 

It is easily seen that (P(i), -al(i)) transforms the standard frame according to 

It follows that this is a rotation around the second axis, which turns out to be 
real, so that 

Y(i) = -[Y(i)]-’ = R(i) = -&(cos $xj - ia, sin 4~:) = &xi . (III-6a) 

The rotation angle xi will be calculated in the following. 

(b) i = 2, 3 (uncrossed particles) 

hence Z’(i)” = [T(i)]+ in this case. 

Y(i) is again a rotation, and it reverses the second axis. We write: 

Z(i) = &(7r) R(i), 

* 9’(i) is not the Hermitian conjugate 2(i) +. In fact, 9’(i) = L:,(i) [Li,;l(i)p and it is quite 
possible that [L;:+lc # [L;?(i)]+, because the analytic continuation of 4,(i) along the path C 
is the Hermitian conjugate of that of La,(i) along the path C*, complex conjugate to C. 
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where R3(v) is a rotation through an angle v around the 3-axis and where R(i) is a 
real rotation through an angle xj around the second axis, 

We write 

g(i) = &ia,(cos 4~:: - iaz sin &xi) = ++ (IIL6b) 

B. Determination of the Rotation Angles xi: The Crossing Matrix. 

We calculate xi , -rr <x; < TT, by 

COS xi = -fi3 * (R(i) ji3) 

sin xi = --$ . (R(i) G8) = fi3 . (R(i) til), 

since x:I is the angle through which 5, has been rotated around the 2-axis. 

Calculation of cos xi 

, cos xi = qz3 o * G?(i) L,(i) fi3), 

with l i = + 1 for i = I,4 and q = -1 for i = 2, 3, according to the definition 
of R(i). 

By definition of h,,(i) and h31(i), 

Ldi) 6, = h&l, 

then 

g(i) fz3 = I?;&); 

cos x; = &(i) h,,(i), 

h,,(i) = -2 mi”Pl3 ~,~:,’ Pl2) Ed , 
1 

hC (i) 
31 

= -2 mS2(p3 - Pd - (pi . (PS - pl>) pi 

miT(i) , 

for i = 1 
3: 

2 
T(i) = for i = 4 (2:) ;: ; 1 :: ;, 
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which yields 

with 

91y;2F21 cos xi = (s + mla - mz2)(t + ml2 - ms2) + 2m12A, 

912F42 cos xi = (s + mz2 - m,2)(t + mz2 - mr) - 2mz2A, 

.-Y&9& cos xj = (s + mB2 - m42)(t + ma2 - ml”) - 2msdA, 

Y2,F4, cos xi = (s + rnd2 - m,z)(t + rnC - m22) + 2md2A, 

A= m22 f ms2 - rnd2 - m12. 

Calculation of sin xi 

Similarly, 

i.e., 
sin xi = ii,(L$(i) L,,(i) ti3); 

sin xi = nlc(i) h,,(i). 

h,,(i) has already been defined, n,c(i) is the analytic continuation of the first 
basis-vector of the helicity frame of particle i in the t-channel. One gets 

For instance, for i = 1, one has nl,( 1) = -(2/&) •PwWt~qS~qlO, whose analytic 
continuation is 

nQl> = -cwa %7J~s’P2pP10. 

Repeating this argument for i = 2, 3, 4 yields 

sin xi = 
2m1W2 2m W2 

sin xi = * , 
/ 

-3xl’ 

sin xi = 
2m2W2 2m,@ 12 

-Kr 
sin xi = m . 

These angles xi determine the crossing matrix, up to an overall sign r)(@, 
independent from the helicities. Taking into account the rotations through n 
around the 3-axis which occur for i = 2, 3, the crossing matrix (111-5) now reads 
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We finally clean out this equation by redefining angles xi in order to write 
the crossing matrix as fl” &(xJ~$ , using identities such as: 

and 
8(X f 7r)f = (-) s*A’ exv 

dyx*)f = (-)“‘-A (j”(-x3;’ = (-)“‘-A d”(Xy;‘a 

Furthermore, we show in Appendix A-II that q(S) = (-)2~r+2*r, so that we get 
the final result, which is given in Table XI, and tested in Appendix A-V on the 
case of 7rN elastic scattering. 

4. CROSSING MATRIX FOR THE REGULARIZED HELICITY AMPLITLJDES 

In the crossing matrix of Table XI, we can express Ma) and Mo) as functions 
of the R.H.A P8) and 9tt), which have been defined in Section II. The crossing 

TABLE XI* 
THE CROSSING MATRIX FOR HELICITY AMPLITUDES 

o(P) = 1 if 1 and 4 are fermions and 0 in all other cases; 

cos ,y* = cs + 171%’ - m12)(t + mz2 - mdz) - 2mz2 A ~ ~ 
11 42 

cos xs = (s + ms2 - m,*)(t; F’ - ml”) - 2msz A 
34 81 

cos x4 = - cs + 
mda - m,a)(t + rnde - m,“) + 2mdB A 

%% 

A = mza f  ma2 - ma2 - mle 

*8bl@ We thank Dr. Trueman for a clarifying correspondence, according to which formula 
of Table XI of this paper can be put into coincidence with formula (43) of Ref. (6) by taking 
into account the particle “2” convention together with a reversal of the normal to the reaction 
plane in the t channel. Our choice of conventions is the same for all reactions once the order 
of particles is fixed. 
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relation then becomes 
g(s) = -$fl~((t) 

{Al (4 CA.1 ’ (III-S) 

where the crossing matrix X enjoys the following properties: 

(1) X is uniform since .F(@ and Ftt) do not have any kinematical singularity 
(except at s = 0 and/or t = 0 if channels s and/or t correspond to BF states). 
This is checked in Appendix A-III. 

(2) X is furthermore a rational function of s and t since it is uniform and 
can be expressed in terms of algebraic functions. We write X&t> = P/Q, where 
P and Q are polynomials. 

(3) Since %t,$ is kinematically finite, zeros of Q have to be cancelled out 
by zeros of some combinations of the functions 9$!, . The study of this problem 
is the purpose of the following section. 

IV. KINEMATICAL CONSTRAINTS 

1. PRINCIPLE OF THE METHOD 

The aim of this section is to generalize to the case of arbitrary spins and masses 
certain relations which must hold between R.H.A.at some values of the energy 
variable as it has been already remarked in TN + TN (16), Z-V -+ Nn (26), 
and Nm -+ Nn (17) reactions and which we call kinematical constraints. 

We recall an example (7rrr + NN scattering) of how such relations are derived. 
If one expresses the invariant amplitudes A and B (see appendix A-V) as functions 
of the R.H.A. F:+. and Ff- , one finds 

I A = f$ [F:, + mN(;- ‘) F:-1, 

B = -2m,Ft-, 
(IV-l) 

which exhibits a purely kinematical pole for A at p2 = 0, i.e., s = 4mN2, unless 
the linear combination of R.H.A., which is the residue of this pole, vanishes. The 
kinematical constraint states that 

F:+h t> + 
mf.4 - 4 2 

2 F+-(s, t) must vanish at s = 4mNa as s - 4mNa, 

If one does not want to make any assumption on the behavior of A at s = 4mNz, 
one can say that the above linear combination ofR.H.A.can be divided by s-4mN2 
without loosing its analyticity properties. Similar results are obtained in Z-N 
and NN elastic scatterings by applying the same method, i.e., expressing invariant 
amplitudes in terms of R.H.A. 
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It is hopeless to try and generalize such a method for the case of arbitrary 
spins and masses since we do not know, up to now, how to invert expansions 
of the type (11-9) or (II-lo), that is to say, to express the Joos invariant amplitudes 
udl&, t) in terms of helicity amplitudes. Furthermore, there is no simple way 
known at the moment to express parity conservation in terms of the set of Q&, t). 
The method which we propose is based on the analyticity properties of the crossing 
matrix elements. In fact, we concluded Section III by noting that the crossing 
matrix elements between R.H.A. are meromorphic functions. Our method consists 
in looking for and canceling their poles. We find that crossing matrix elements 
giving t-channel R.H.A. in terms of s-channel R.H.A. behave near P& = 0 
and Ys, = 0 as 

p7-(2s~+a& 
12 and y-(2s~+23* 

34 

Apart from these poles the crossing-matrix elements have poles at s = 0 (branch 
point if the s-channel is a BF + BF one). This does not give more information 
than is contained in Eq. (11-23) and (I&24), which express that the helicity 
amplitudes themselves are kinematically regular at s = 0. On the other hand, 
we verify that, despite the presence of sin(B,/2)1a-rl cos(6,/2)‘~+~’ in their denomi- 
nators, all the crossing-matrix elements are finite at @(s, t) = 0, except in the 
case m, = m2, m3 = m4 where #i2 = #a4 = s1/2 and @(s, t) simultaneously 
vanish at s = 0 (see Appendix A-IV). 

Since the R.H.A. in the t-channel have no kinematical singularity at Y12 = 0 
and sp34=0, one could be tempted to say that the vanishing of the s-channel R.H.A. 
at Y&! = 0 and Ys4 = 0 provides a generalization of the kinematical constraints. 
However such a statement does not take into account the fact that, for instance, 
the determinant of d(x) is unity and thus has no pole even though all the matrix 
elements may have one. Such an argument would imply, in 7rrr + Nis scattering 
for instance, that both F:, and Ff- have to vanish at s = 4mN2 as s - 4mN2, 
which is wrong. 

These difficulties can obviously be avoided if it is possible to diagonalize the 
crossing matrix for R.H.A. or at least the crossing matrix for helicity amplitudes. 
Now this has been done by Kotariski (9), who remarked that, since the reaction 
plane is the same for both channels, one can define amplitudes for which the 
crossing matrix is “diagonal” (in fact, the crossing matrix has only one nonzero 
element in each row and column) by choosing the spin quantization axis along 
the normal to this plane, that is to say along w. Such amplitudes have been called 
by Kotaiiski “transversity amplitudes”. Our method to derive the kinematical 
constraints then consists in writing the crossing matrix for transversity amplitudes 
and looking for the singularities of its elements. 
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2. KINEMATICAL CONSTRAINTS IN THE GENERAL-MASS CASE 

A. Transversity Amplitudes 

We briefly recall here the properties of transversity amplitudes. We call 
transversity of particle i the eigenvalue of the operator 

where again 
-(llmd wpJWPi) 

- &L”*PlvPaPPao 
w/d = [@(s, t)]l/2 ’ 

and W(pJ is the polarization four-vector of particle i. Whereas, for particle i 
the helicity frame is defined by 

Pi , %(Pih ndPi) = W7 4~~) = Mi), 

a “transversity frame” can be defined by 

Pi, n,(pi), nzT(Pi) = --h,,(i), naT(Pi) = W. 

So, transversity states are related to helicity states by 

I Pi 9 UPi), si 9 Ti) = D*‘(R): I pi 9 L(pt), sip &>a 

Here R is a rotation through -&r around the first axis, i.e., specified by Euler 
angles $7~, Qn, -+rr, and the subscripts t and h refer respectively to transversity 
and helicity frames. In Reference (9), Kotariski, has given the properties of P(R). 
We recall here the most useful one, namely, that it diagonalizes the matrices dS(x): 

[D(R) ds(x) D(R*)]t = e*x7S7(\, 

or 

[P(R*) d8(x) P(R)]: = e--ixTSIA. (IV-2) 

Transversity amplitudes are related to helicity amplitudes through: 

TT87p;7118 = D8’(R); D8a(R); D”“(R*); II”‘( M1\814;Illg. (IV-3) 

Among all the properties of transversity amplitudes given by Kotafiski we recall 

(a) Parity-conservation condition. From Eqs. (IV-3) and (11-6) (parity 
conservation condition for helicity amplitudes) and from 

(-)8+A D’(R); = &g8(R)-9 , (IV-4) 
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we deduce that 

(b) Crossing matrix. From Eqs. (IV-2) (IV-3) and from the crossing 
matrix for helicity amplitudes (Table XI), we derive the crossing matrix for 
transversity amplitudes, 

(IV-6) 

where the x angles are defined by their cosines and sines in Table XI. 

B. Relations between Transversity Amplitudes and R.H.A. 

We shall show that crossing relation (IV-5) implies a specific behaviour of the 
transversity amplitudes which yields the kinematical constraints between 
regularized helicity amplitudes. Before doing that, it is necessary to study how 
the transversity amplitudes are related to R.H.A. near all the singularities. 

(a) s = 0. The general study of Section II has shown that helicity amplitudes 
are kinematically regular at s = 0. Since the transversity amplitudes are linear 
combinations of helicity amplitudes with numerical coefficients, they do not have 
a kinematical singularity at s = 0. 

(b) 9& = 0 and 9& = 0. Applying Eq. (II-12)-(11-15) to MA31pzA1A8 , which 
appears in the expansion (IV-3), and using Eq. (IV-4), we find 

according as (9%(-,,,) = e,(,,,) f T; 

according as 0,(- &) = 19,(&,,) f 7r; 
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according as 

and 

es(-v34) = es(P)341 I!= =; (W-7) 

according as 

8s(-$34) = es(#,,> * =. (N-7) 

Furthermore, recalling Eqs. (11-19) and (II-20), which give the behavior of helicity 
amplitudes near Y1, = 0 and YZoQ4 = 0, we see that 

(IV-8) 

is kinematically jinire at Yr2 = 0 and Sp, = 0. Furthermore, the coefficients 
of the expansion of ~TiT371;,172 in terms of R.H.A. are not all equal to zero at Y12= 0 
and 5& = 0. 

(c) @(s, t) = 0. Replacing the MAs14:1112 appearing in Eq. (IV-3) by 

sin(8,/2)1A-pI cos(0J2)lA+4 Br\al\4.11dB 

(where -@A~A~+~ is kinematically regular at @(s, t) = 0) and using 

and 
DyR)p = ei”T (-)s+A Ds(R)“7 

we find: 

T&..& -@1’2) = ( -)sl-s~+s~-s~ ( -)*1+“2-73-T4 T:71)-74;-71-12(@1’2) (IV-9) 

if 0,( --@l/2) = - 0,(W2) and 

T&;717a(-@p1’2) = (-)91-S2-S4+SS (-)71+T2-‘8-‘4 T:,a+71-72(@1’~, (IV-lo) 

if e,(-w/2) = 2~ - e,(w). 

It would have been possible to guess such results qualitatively: since the 
transversity four-vector w  has a @I2 branch point, T~~74Z7172(-@1/2) is related to 
TZ 73-Tp:-T1-71(@/2). On the contrary, the singularities at Y;Z = 0 and LX& = 0 
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appear only in the second basis vector, --h,,(i), of the transversity frames. So, 
it is not necessary to combine two or more transversity amplitudes to get amplitudes 
which are kinematically uniform at 9& = 0 and 9% = 0. 

C. Kinematical Constraints in the General Mass Case 

Since T&, l--74-72 is kinematically regular at 9& = 0, YB, = 0, and 
s = 0, T8 73T4;7172 will have to cancel all singularities which may appear in 
exp[i(T,x, - 72x2 + 73x3 - 7&] [Eq. (IV-6)] at Sp, = 0 and =ya = 0. 
We then say that, T:824L71T2 has to behave near 9& = 0, 9?Z = 0 like 
exp[-i(T,xl - 72x2 + 7sxs - TEXT)], which we rewrite as 

exp 

73 + 74 +(xs+x4)~+(x3-x4) 2 I). 

We now study the behavior of exp[i(x, f x2)] (resp. exp[i(x, & x4)]) near Y12 = 0 
(resp. Ys4 = 0). Since near Y12 = 0 (resp. 9, = 0), cos(xl + x2) and sin(x, + xZ) 
[resp. COS(XJ f x4) and sin(xa f x4)] behave like [s - (m, 7 m2)2]--1 (resp. 
[s - (m, F m4)2]-1 [see Appendix A-III, Sec. I-l, and Eq. (A-III-l)], exp[i(x, f x%)] 
(resp. exp[i(x, 5 x4])) will have either a pole or a zero at s = (ml f m2)2 
[resp. s = (m3 f m4)2]. (exp[i(xi + xi)] has a zero if exp[-i(xi + xi)] has a pole 
and vice versa). From the expression of sin xi one can see that the behavior of 
exp[i(xl * x2)] and exp[& f- x4)] depends on the determination of [@(s, t)]lj2. 
We will show below that, in order to write explicitly the kinematical constraints, 
it is sufficient to know the correlations between the behaviors of exp[& + x&l, 
exp[i(x, f x4)], and for instance that of eies. This can be done directly using 
relations given in Eq. (A-III-I). Results are given in Table XII. 

TABLE XII 

mi - mj 
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Table XII allows us to write the kinematical constraints in terms of the 
amplitudes T&d;,178 defined in Eq. (IV-8): 

Near 4)12 = 0 

Near I,& = 0 

Near 9)34 = 0 

Near #M = 0 

(W-1 1) 

In order to make the meaning of Eq. (IV-11) clear, we add the following 
important remarks. 

(a) In terms of regularized helicity amplitudes, Eq. (IV-11) are actually 
constraints: this means that near s = Si , (S, = (ml + m#, S, = (ml - m2)2, 
S, = (m3 + n2,)2, S, = (m, - m$), some linear combinations of R.H.A., with 
coefficients which do not vanish at s = S, , must behave near s = S, like 
[(s - Si)1/2]Ni, h w  ere Ni is a nonnegative integer. 

(b) Since eieala N (S - SJ*1/4 if e,[-(s - S#/2] = Q(s - Si)1’2] f rr, we 
see that Eq. (IV-11) which make use of crossing are compatible with Eq. (IV-7) 
which only use regularization of helicity amplitudes. This, by the way, provides 
a consistency check on the evaluation of the crossing angles xi . Further- 
more, this proves that, if Ni is odd, then ~~~71:715g[(s - Si)1/2]-1 is kinematically 
uniform at s = Si . 

(c) If one changes the determination of W2: 

(i) the behavior of e*ea changes into its inverse at s = Si ; 

(3 C8, z71Tz changes into T!7Q-14+T111 up to a phase as shown in 
Eqs. (IV-9) and (IV-IO). So, Eq. (IV-11) with either the plus or the minus sign 
corresponds to the same set of kinematical constraints for R.H.A. 
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(d) - For practical applications, Eq. (IV-11) can be understood in the 
following way: 

with p = 0, l,..., 
( 9, 

i = I,..., 4; (IV-12) 

ASI = (ml + pJ2; S, = (ml - m2)2; S, = (ms + mJ?; S, = (m, - mJ2; 

Nl = Sl + .Q, + 71 + 72 , N2 = Sl + s2 + %2(71 - 7219 

N3 = sa + s4 + 7s + ~4, N4 = s, + s, + 4~3 - ~a), 

I 
Ni 

Ni- = Ni - 1 
if Ni is even, 
if NC is odd, 

Eij = i?li - mj . 
I mi - mj I ’ 

T ,81,z71rI being expressed in terms of R.H.A. through (IV-8), (IV-3) and Table IV. 
Quite equivalently, constraints read: 

with p = 0, l,..., 
( 1); i = I,..., 4; (IV-13) 

N; = s, + s2 - ,rl - -r2 , N; = s, + ~2 - 612(71 - 721, 

N; = sg + s, - r3 - r4 , N; = s, + s, - ~~~(7~ - r4); 

pi f 
r*r*:71+*(S, t> = 

rg7,:7pa 
[(s - ~,)‘P]~;-~;- * 

In this way the kinematical constraints appear as the vanishing of linear combina- 
tions of the R.H.A. and their derivatives at s = & with coefficients polynomial in f. 



286 COHEN-TANNOUDJI, MOREL, AND NAWLET 

3. KINEMATICAL CONSTRAINTS IN PARTICULAR MASS CASES 

The general analysis applies in the case Y& = Ya, = Y, l l2 = cgq. Eq. (IV-12) 
becomes 

with p = 0, l,..., 
( 
F - 1); i= 1,2, 

s, = (ml + m212, s2 = (ml - m212, 

Nl = s, + S2 + S3 + S4 + 7-l + 72 + 73 + 74 ; 

N, = Sl + s2 + S3 + s4 + E12(71 - 72 + 73 - 74); 

(W-14) 

or equivalently Eq. (IV-13) becomes 

with p = 0,l ,...) Jg - 1); i = 1,2, 

N; = s1 + s2 + S3 + S4 - 71 - 72 - 73 - r4 ; 

N; = sl + s2 + S3 + S4 - E12(71 - 72 + T3 - Td; 

(IV-IS) 

New problems arise when $I2 and/or #34 coincide with s112. A particular study 
of this case is given in Appendix A-IV. 

Finally we show in appendix A-V how all the kinematical constraints which 
have been already observed in some particular cases can be derived in the 
framework developped in the present section. 

V. SUMMARY AND CONCLUSIONS 

This study of the helicity amplitudes with respect to their analyticity properties 
as functions of the invariants leads to the definition of new amplitudes which are 
analytic in the image of the analyticity domain of the spinor amplitudes in the 
space of the four-momenta, on the mass-shell. Our results hold for a large set 
of mass cases, and whatever spins are involved, with the exception of a BF-+ BF 
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reaction, when we are left with a square-root type singularity on the c.m. energy 
variable squared, which is related to the so-called “Mac Dowell reciprocity 
relation.” We would like to emphasize that the two basic tools in the work are 

(1) The analyticity of the Joos expansion for spinor amplitudes (2), (3) 
(2) The existence of an analyticity domain for the spinor amplitudes, which 

connects the various physical regions associated to a given two-body process 
(crossing property) (5). 

We have also made use of the interesting properties of the transversity 
amplitudes (9), in connection with the question of kinematical constraints. 

Our results are of three types. 

(1) The helicity amplitudes can be made free of kinematical singularities. 
More precisely, whether parity is conserved or not, the relevant number of 
linearly independent new amplitudes qA, can be defined, which are related to the 
Joos functions ac [Eq. (II-27)] through polynomial coefficients in s, t, and u.@ 

(2) A crossing matrix is derived for the helicity amplitudes using an analytic 
continuation path from one physical region to the other. For the regularized 
helicity amplitudes S, the corresponding crossing matrix has elements of the 
form P/Q where P and Q are polynomials in s, t and u*. 

(3) By using the so-called transversity amplitudes, for which crossing yields 
a relation between only one amplitude in the s-channel and an other one in the 
t-channel, the problem raised by the existence of zeros in Q is more easily solved 
than for the 9 functions. The solution is expressed by means of relations between 
the S functions and some number of their derivatives with respect to the c.m. 
squared energy, which hold at certain values of this variable, namely at thresholds 
and pseudo-thresholds. 

We think that such considerations on the analytic properties of helicity 
amplitudes can lead to two kinds of applications: 

(1) For any phenomenological model which makes use of crossing properties, 
especially for Regge type models, the 5 functions are good candidates to satisfy 
a Mandelstam representation and to be approximated by Regge type functions. 
Furthermore, taking into account the kinematical constraints yields some informa- 
tion either about possible relations between the residues of a given Regge pole 
or about the existence of families of poles, depending on the ideas one may have 
about the question of “evasion or conspiracy” (I), (17). These properties, together 

@ When the considered channel corresponds to a BF state, one should replace the relevant 
c.m. squared energy (s, t or u) by its square root. 

*Obia When the considered channel corresponds to a BF state, one should replace the relevant 
c.m. squared energy (3, t or u) by its square root. 
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with crossing relations, allow to write phenomenological formulae which are at 
least “kinematically correct”. 

A last remark concerning the kinematical constraints is that no constraint 
can be found for vanishing c.m.-squared energy in the general mass case. The 
relations which have been discovered by Gribov and Volkov (17) in the reaction 
NN --f NN at t = 0 (t is the c.m.-squared energy), can be generalized to any spin, 
but only in the equal mass case. The true generalization of these relations is given 
by the kinematical constraints at pseudothresholds. The existence of these 
constraints is then a very general property of any helicity amplitudes involving 
high enough spins, thus although such relations can hold at zero c.m.-squared 
energy in some mass cases, they seem to be of a nature very different from that 
of constraints which are implied, inside the Regge pole model, between the 
so-called “daughter” trajectories (18). Indeed, in the NN -+ NN reaction, for 
example, there is no need for daughter trajectories (equal mass case), whereas, 
just because of the equality of the masses, a kinematical constraint exists at zero 
c.m.-squared energy. 

(2) Another application of the present study could be, on a more theoretical 
ground, to allow the generalization to the caseof nonzero spins of the results 
which have been obtained for the analyticity domain of the amplitude from 
axiomatic field theory (29), in the spinless case. Here we must notice that the 
enlargement of the analyticity domain which has been obtained makes use of a 
positiveness property of the absorptive part, which is a consequence of unitarity. 
However, the content of unitarity seems difficult to express so simply by some 
positivity condition in the case where there are several two-body coupled channels, 
which occurs for an elastic reaction between particles with nonzero spins (20). 

Finally, it would be interesting to build out of the set of R.H.A. with the 
corresponding kinematical constraints, new amplitudes with the same analyticity 
properties, but free of any constraint. This would yield a new basis for an analytic 
expansion of spinor amplitudes. Parity would be easy to express and amplitudes 
would be labelled by meaningful indices, simply related to the individual spin 
components. 

APPENDIX A-I. KINEMATICAL SINGULARITIE~IN PARTICULAR MASS CASES 

We give here the details of the calculations corresponding to the particular 
mass configurations shown in Table V. 

We have not studied very pathological cases such as, for instance, 
m,+m,=m,+m,,m,-mm,*m,-mm,. Furthermore, we assume that when 
two particles have the same mass they are of the same species; in particular, 
they have the same spin. We shall always assume that parity is conserved. In all 
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cases, the study of the kinematical singularity at @(s, t) = 0 goes as in the general 
case. 

I. “ELASTIC SCATTERING": m, = ma, m2 = mp, m, # m2 

We define new notations: 

Y12 = Ya = Y = ([s - (ml + m.J"][s - (m, - m2)2])1/2, 

p = k = 9/2s1J2 7 

co1 = o2 = E, 02 = wq = w, 

cos 8, = 1 -/- tJ2p2. 

A new situation arises from the confluence of Y12 = 0 and 9% = 0 to 9’ = 0 
(Table H-5). Expansions A and B are no longer suitable. Now p cos(6,/2), p sin(BJ2) 
are regular at 9 = 0. So, we introduce a new frame, which we call RIII, 
characterized by n,(R) = (q12 + q&[-(q12 + q94)2]-1/2, which leads to the 
Expansion C shown in Table XIII. 

TABLEXlII 
EXPLICIT FORM C OF EQ.(II-~)C~RRE~P~NDING TOhAMERm, 

WHICH IS CONVENIENT TO STUDY KJNIMA~C~S~NG~LA- AT 

9 = 0 WHEN ml = ms AND m, = i?i4. 

Frame R III 

m = -&, n,(R) = w, 49 = a2 + 4a4 
r+1z + 9aaw* 

EP s%‘-W) ip sin(6,/2)(w - E) 

e(llpl,llpj = 

/ 

-ip~sinc9, 
P--b . 
e(rlp* , APJ) = -$pshes 

0 &P COSWWJ + El 

-‘G(l) = R,(--8,/2) BI 
&p(2) = I?,(--k/2 + ~1 Bz 

&z(3) = R”W2) & 
f%(4) = R,G’,P + 4 4 

The dots stand for quantities kinematically regular at 9’ = 0 (Y = .Yle = YU) 
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1. Kinematical Singularities at 9 = 0 

s = (ml + m$. Using Expansion C [Eq. (A-1.1) of Table XIII] and turning 
around s = (m, + mz)z along the path shown on Fig. 2, we find the following 
changes: 

*es - 9, i =, 
p---P, 

since with our assumption on the species of equal mass particles, r] = +l if 
ml = m2 , m2 = m4 . Thus, ~~~~~~~~~ has no kinematical branch point at 
s = (ml + m2)2. 

s = (m, - m2)2. At pseudo-threshold we find 

~A8&A1A2eJh2) = d-)2s1+2s* ~AQA4;A1&12> = ~m,,:*&42> 

since 7 = +l and s1 = s3 . Thus &1,A4;A1/1, has no kinematical branch point at 
s = (m, - m2)2 either. 

Kinematical poles. Since d8(fBs/2) is a homogeneous polynomial of degree 
2s in sin(0,/4) and cos(8,/4) and since sin(0,/4) oc (9)-l/” and cos(8,/4) cc (9’)-112, 
one has 

aQA4:A1A2 cc (Sp)-e[nlt-s,-Ma~x(lIl./rl)l. 

2. Kinematical Singularity at s = 0 

In principle, no special study is needed at s = 0. However, we get a result slightly 
different from that obtained in the general case: since it is not necessary to associate 
two different helicity amplitudes in order to get an amplitude without kinematical 
singularity at 9 = 0, it is possible to pick up the whole kinematical singularity 
at s = 0 even in the BF -+ BF case. Recalling that 

&&5A4;*1A2 (x (s~.~y~-~‘2~s4Pl 

where now c12ea4 = + 1, 

(A-1.2) 

has no kinematical singularity. (Results are given in Table VI). 
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II. m, = m2 = m; m3 f m,; s, = s2 = sin 

The general study applies to Y3* and ?I2 . & now coincides with s~/~. 

I. Kinematicai Branch Point at s = 0 

k = (s - 4m2)l12 $12 

2 ’ 
w=clJl=o2=--, 

2 
cos e a 9. s 

We use expansion B [Eq. (II-IO)] for which the third components of the semi- 
bivectors are regular at s = 0. One turn around s = 0 induces the following 
changes: 

w3 xt P - -(w3 AI P), 
w4 It P -+ -(a4 i P), 

(co - k)/m -+ -m/(w - k), 
-es+--rr+e, 

From 

one gets 

ti,4&A1A2( -s1’2> = (- l)Al+Aa+p r112~~,ld:-~1-IB(s1’2). 

Thus, with the notations defined in Eq. (11-17): 

for A1 +h! + p even I 
42 have no kinematical branch points at s = 0 ksl12g 12 and s = 4m2; 

for A1 +X2 + p odd 
I 
S1/2d 

l2 
have no kinematical branch points at s = 0 

kg 
12 and s = 4m2. 

2. Kinematical Pole at s = 0 

Applying the general analysis, one finds that each term of Expansion B 
[Eq. (II-IO) of Table II] behaves like 

(Sll2)crsrL41+&); 

and since the sum over A1 and A, runs from -sin to +sin the worst behavior 
will be 

(SW)-291, 
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so that: 

(~W)Wd’ d12 and (,yv)wn)+-l q2 for X,+X, +p even 

and 

(,g/~)w,)+-~ d12 and (,y1/2)wn)- al2 for h, + A2 + p odd (A-1.3) 

have no kinematical singularity at s = 0. (Results are given in Table VII). 

III. m, = m4 = m’; ml # m2 ; s3 = s4 = sf 

This case is quite analogous to the preceding one. One finds easily that 

(sl/yv d24 and (s1/2)(2s,)+-1 & for h, +X4 + h even 

and 

(~l/y,)+-1 &g24 and ($P)‘%‘- g& for X, + h, + h odd (A-1.4) 

have no kinematical singularity at s = 0. (Results are given in Table VIII). 

IV. m,=m2=m;m,=m4=m’;m#m’;sl=s2=s~,,s,=s4=s~ 

The general study applies to the thresholds, but now & and $sd coincide 
with s1i2. 

I 

Wl = wg = w2 = 04 = #l/y 
k = S(s - 4m2)lj2 
cos 0 8 is regular at s =pO.= ‘(’ - 4m’2)1’2 

Expansions A, B and C are not suitable since the third components of the 
semibivectors are singular at s = 0 in the corresponding frames. However, one 
can see that in these three frames the second component of the semibivectors, 
equal to fipk sin 8,) is regular at s = 0. So, we define a new frame (frame RIV) 
in which the third axis is the second axis of frames RI, RI1 and RIII, namely, w. 
This leads to Expansion D shown in Table XIV. 

1. Kinematical Branch Point at s = 0 

One turn around s = 0 transforms 

( % - Pi5 
1 

into - 
( 

wi - Pd5 -l 
md m 1 - 
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TABLE XIV 

EXPLICIT FORM D OF EQ. (II-S) ~EUUN’ONDING TO FRAME RIV, 
WHICH IS CONVENJENT TO %VDY THE KWEMATICAL &NGULARlTY AT 

s = 0 Wmli m, = m, , m, = md. 

Frame R IV 

f(R) = -&, 
a2 + 484 

n,(R) = - [-(qla + qu)*]‘,a ’ ndR) = w 

y  sin(B,/2)(k + p) q si@,/2)(p - k) 

444 , APT= - T cos(8,/2)(p - k) 

i . 

- T sin(f&/2)(p + k) 

-ipksinB. $ksine* 

4,(l) = &(743 U-42) 4 
md2) = u+) q-4/2 + 4 B, 
A&(3) = R&/2) R,(W) & 
A&(4) = R,(77/2) R,C%P + 4 4 

R,(n/2) is a rotation through ~~12 around the l-axis 

&(dV = -j; (-‘i -;) (JSuler angles --lr/2, 3712, n/2). 

Expansion D 

M 
%+4:~1~* 

= 1 (-)~d\e+‘s+% D’l(BJ~ D”t(B,)~ D%(qq D”4@3,>~~ 

(A-1.4) 

Ml + ME = AI + A, + A, + Al 
The dots stand for quantities kinematically regular at s = 0. 

From 

D”(- 7~12, 42, 42): ds(tl)z = ( -)8+A emiffA D?(- 742, 42, r/2)$ d*(B)!, 

we find, with Expansion D, il? A,A,:A,A,(-~~‘~) = ~-s-,,,:-~,-l,(sl’*)(-)~~a~, or 
taking parity conservation (11-6) into account, 

J&8A,:llA*(-S1’2) = +--)c’Ai ~A,A,:n,A,(~1’2~. 
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2. Kinematical Pole at s = 0 

Each term of the sum in Expansion D behaves like (s~/~)I~~I+I~~~ and since 
Ml 1 + 1 M, 1 > 0, there is no kinematical pole at s = 0. 
To summarize: 

if r] = +l (i.e., BB +BB,FF+FF,fl+m), 

@-“2> J&A4:A1A2 for C & odd, 
i 

and, if 7 = -1 (i.e., BB + FF, FF + BB), 

W2) %&A1A2 for C hi even, 
i 

J&A&A* for c hi odd 
i 

(A-IS) 

have no kinematical singularity at s = 0. (Results are given in Table IX). 

V. m,=m,=m,=m,==m;sl=s2=s,=s4=S;q=+1 

Near s = 4m2 we apply the study of case I and near s = 0 we apply the study 
of case IV and find directly that 

p2(2s-MWW .IPI)) fiAsAr.A,A, for C Xt even, 
i 

A 

p2’2S-Max’lA~.lt~,, 
MA&A& 

$/2 for 1 Xi odd 
i 

(i-1.6) 
have no kinematical singularity. (Results are given in Table X). 

APPENDIX A-II. 

DETERMINATION OF THE OVERALL SIGN ~(~1 IN THE CROSSING MATRIX 

The method we used in Section III-3 cannot yield the overall sign q(@ since 
we only follow the helicity frames all along the continuation path instead of 
the relevant 2 x 2 matrices. We first prove that qc8) can only be a product of 
(-)28d factors. 

As shown in Section 111-2, fermions can be associated by pairs so that the 
tensor product of the corresponding 2 x 2 matrices L&i) can be unambiguously 
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continued. This means that the relative sign only of L;;‘(i) L,,(i) and Lag’& 
can be determined independently of the chosen continuation path r in qi-space. 
Let us define cr by: 

L?(l) = Lgl(l) L,,( 1) = EI’cYl 

where 01~ has been defined in Eq. (III-6a); L&(l) is the analytic continuation 
of L,,(l) along a path r. Now Z(i), (i = 2, 3,4), as obtained through analytic 
continuation along the same path, can be written as 

9(i) = c&o+ where e; = *1. 

This proves that ~(8) = ~~~~~~~~~~~~~~~~~~~~~ and, owing to the fact that xi 2si is 
even, r](@ is independent of F and furthermore it is a product of (-)zsi factors. 
In particular, $3) = +l for a reaction involving four bosons. 

Since (-)ci28i = 1, the only possible values of 7(S) are 

(-)291, (-pa, (-)283) (-)284, (-)2s1+2sz, (-)281f283, (-)281+2sr* 

A first simplification is related to the involutary character of the crossing 
operation. 

Substituting angles xi, as defined in Table XI, instead of angles xi involved 
in Eq. (111-7) yields 

and permuting s and t in the above relation, we get 

(A-11.1) 

(A-11.2) 

Since the analytic continuation is made along the same path, the angles xi and xl’) 
can be compared at the same point. One finds that 

Xi = -xj”’ for crossed particles, 

xi = xl”’ 
(A-11.3) 

for uncrossed particles. 

If one now inverts (A-11.1) and substitutes (A-11.3) into (A-11.2), comparing 
the two expressions obtained for M!,,“!) yields 

77 (8) = (-)282+233 p. 

The four possibilities left for T+@ are then 

(-)2Sl, (-)284, (-)281+29x, (-)2s1+283. 

(A-11.4) 
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As a consequence of our preceding discussion about the sign ambiguity, we can 
choose a de&rite path r, and write for this path 

E.&Xi = Lzil(i) L,,(i) where Ed = fl, 

1) (s) = E;81E;~ea~%E~% - - (Elf2)2s” (E1E3)- (E1E328r , 

By inspection, we see that the determination of only two relative signs, eleQ and .QQ , 
say, allows us to discriminate between the four possibilities. Exhibiting explicitly 
the matrix E = iu, which occurs in the definition of the 2-body helicity states, 
we define matrices /$ through 

Elf% = @I 9 E2Ol2 = E/?lZd, 

Baaa = Pa P 4‘pp = &s-l. 

ElEa and ‘aed are thus determined by a direct calculation of 

(A-11.5) 

Taking p large enough in the definition of path C in Section 1113-A, we get a 
continuation path which stays constantly far away from the singularities, the 
precise location of which depends on the masses. Then +) does not depend 
on the mass case, so that it can be evaluated when masses are equal. 

In this case, Eq. (A-11.5) reduces to 

731 = --iv,q = /$?A, 
(A-11.6) 

DIRECT CALCULATION OF y31=E1/31 

Going back to the definition of L,(i) and L,,(i) as given by Eqs. (1113) and (II-4), 
respectively, and setting there L&(i) = &(i) c’-l and l&(i) = L,,(i) d-l, we get: 

ysl = L&l(3) L;;(3) &l”(l j L;,(l). 

Particles 3 and 1 belong to the same (final) state in the t-channel. Then Eq. (1113) 
yields: 

L;,(3) L&‘(l) = B ($ --+ +) B-l ($ --t +). 
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This matrix, with a positive trace (as can be seen by taking qs = ql), represents 
a pure Lorentz transformation in the 2-plane ql , qs , which takes ql/m onto q$m. 
Then 

the analytic continuation of which is: 

Now Eq. (A-11-6) shows that yS1 (and yaz) do not depend on the standard frame. 
So, once the analytic continuation is performed, we can take as a new frame the 
c.m. frame in the s-channel with 2-axis along w  and 3-axis along q12. Let 8, be the 
scattering angle, and let E = s1i2/2; then 

where R(B,) = cos(8,/2) - ia, sin(6J2). We then easily find 

y31 = R-V&= '~3 - = l pl) 
tl/2 

. 

Evaluating $ Tr(icrly,) from (Eq. A-11.6) we find 

ElC3 = 
2ip sin e,j2 

p/2 with 2p = (s - 4m2)l12 > 0 

above the s-cut. 
In the s physical region, t is negative and P/* = i 1 t 11j2, 8, is positive, so that 

sin(BJ2) = 1 t j112/2p. Thus: 

EXE3 = +1. 

DIRECT CALCULATION OF ya2 =&'p2 

The preceding calculation can be exactly reproduced, because 4 and 2 also 
belong to the same (initial) state in the t-channel. One finds 

Y42 = 
R-VJ(= '~4 - = '~2) 

tw 

in the s-channel c.m. frame above-defined, so that ya2 = --ysl. Comparison 
with Eq. (A-11.6) yields 

E2f4 = ElE3 . 
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Looking at the possible values of +), we conclude that 

r (s) = (-)2s1+283 = (-)28e+2sre 

APPENDIX A-III. CONSISTENCY BETWEEN CROSSING AND REGULARIZATION 

We have defined kinematically regular helicity amplitudes F in both s- and 
t-channels. A consistency check of their being kinematically uniform at thresholds 
and pseudo-thresholds can be performed by looking at the behavior of the 
corresponding matrix at such points. As shown in section IV, the occurence 
of poles in this matrix does not mean that regularization is wrong or that individual 
amplitudes have to vanish, but yields the kinematical constraints. So, we shall 
just make sure that crossing matrix between R.H.A is uniform at ,sP, = 0,9& = 0, 
Fs, = 0, Fd2 = 0. We first study the crossing angles xi at such points and then 
the corresponding properties of the crossing matrix. 

I. SINGULARITIES OF THE TRIGONOMETRIC FUNCTIONS OF THE CROSSING ANGLES 

After turning around a threshold or a pseudo-threshold branch point of the s 
(Resp. t) channel, we see that cos xi , sin xi , cos 0, and sin 19~ (Resp. cos Bt 
and sin 0,) change sign, which means that the corresponding angles are increased 
or decreased by 7~. We first show that these alterations are not independent. 

1. Angle Relations 

A. Branch point at Y’$ = 0 

Let us calculate sin(x, + q2) where E = &l, using Table XI. We find 

97,9&F4, sino(, + q2) = 2@1’2[s - (m, + l m2)2][t(ml - rm3 
+ (m2” - mf) m, - 6m2(m12 - m,2)]. 

Recalling that 9’f2 = [s - (m, + m2)“][s - (ml - m2)2], we conclude: 

(1) sin(x, + x2) does not have either a pole or a zero at s = (m, + m2)2. 
Then sin[(;y, + x2)/2] and cos[(xl + x2)/2] have no branch point at ‘plz = 0, so 
that, upon turning around yr2 = 0, x1 + x1 + clrr whereas 

x2 + x2 - El7r (El = &l). 

(2) Similarly sin(x, - x2) does not have either a pole or a zero at 
s = (m, - m2)2, and, upon turning around Z,&~ = 0, we see that x1 and x2 now 
behave identically. 
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To relate the behavior of 8, to that of the x’s, we conclude sin(8, + EX~), 
E = fl. We find 

= 2@1/2(s1/2 + m, + em2)(s1/2 - m, + l m&W(t - mz2 - mq2) 
+ l 2(s - m32 + m43>. 

With the positive determination of s1j2 (above the cut), we conclude that 

sin(0, - x2) does not have a pole behavior at q12 = 0; 

if m, > m2, sin@, + x2) does not have a pole behavior at &2 = 0; 

if ml < m2, sin(8, - x2) does not have a pole behavior at #lz = 0. 

B. Branch points at 55% = 0, 9& = 0, Fd2 = 0 

Similar methods are used. Symbols p)42 , #42, P)~~, & are defined in the t-channel, 
as q.+2 , & , ~~~ , #a1 are in the s-channel. 

All results are summarized in the following table, which gives the correlated 
behaviors of various angles when one turns around a given branch point. 

y12 If 0, - 8, + E7T then x1 - x1 - err, x2 -x2 + l G 

Ifi 12 if 6, - 8, + l T then x1 -+ x1+ fE12'iTT x2-x2 + %2"; 

p)34 if e, - es + Er then x3 - x3 - ET, x4-x4 + EC 

* 34 if 8, - es + E7 then x3 - x3 - =347T, X4-+X4 - =3477. 

~42 If 8, - et + En then x4 - x4 + l T, x2-x2 + ET; 

# 42 if fl, - et + ET then x4 - x4 - EE~~T, x2 - x2 + ~6~~7~; 

vsl if e, - e, + Err then x3 - x3 - EPT, x1- Xl - EC 

$31 if 0, - et + Ed then x3 - x3 + EE~C-, xl - x1 - EE~P. 

(A-III. 1) 

(A-IIJ.2) 

We recall that l ii = sign(m, - mJ, 

II. CONSISTENCY BETWEEN CROSSING AND REGULARIZATION 

Although we have checked consistency for all types of reactions, we shall only, 
for the sake of brevity, reproduce here one such check explicitly, namely, in the 
case of four fermions, with relative intrinsic parity 7 = + 1. 

595/#72-7 
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Let F&) (Resp. GfhfJ) be the R.H.A. in the s (Resp. t) channel, where i = 1,2. 
Rutting together the regularization formulae (Table IV) and crossing relations 
(Table XI), we obtain 

c&&&a\;“; = ein(A3-As) sin(fl&)P-P’l cos(5Jt/2)lA’+P’I (,y1/2)lAl+lPl 
w4ve P W’“’ sin(e,/2)l”-PI coS(~s/2)lA+~I (t112)IA’l+l~‘l 

- - 

x (A-III.4) 

h' = x; - A; ; p' = j$ - A 
1' 

m42 = ~4 -t- s2 - Max(l x’ I, I I.L’ I), and Ai,===mf.-rn;. 

m31 = s3 + s, - MM A’ I, I P’ I>, 

1. Branch Points Y3( = 0 

The only quantity in (A-111.3) which is singular at 9, = 0 is $1. So, we have 
to show that the combination C 
and $34 = 0. 

$i + 734Ci$jAJ is uniform both at P)~ = 0 

A. Branch point at qa4 = 0 

From (A-111.1), the singular terms of C&) in (A-111.4) have the following 
behavior upon turning around 9)34 = 0: 

sin(8,/2)l”-pl ~os(8~/2)/~+@1 4 sin(BJ2)1~+@1 cos(B8/2)I+l (-)I\++, 

dyx$g dQ(x4)$ -+ d”“(x3pA3 cP(xJ$ (-)8,+s@ti; 

on the other hand, ei?r(la-4) = ( ) - 28* eirfX*+lsf, so that we find 

G:;;A,*c-~3d = (->"3-s4-A C~;~-A4A1Az(CP3k = 7)34C?;~-A,A,&34I 

since (-)83-aa = (-)“@s in the case under consideration (FF + FF). We then 
verify that the relevant combination of coefficients $1 is uniform as it should be. 
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B. Branch point at #% = 0 

In the same way, turning around #aIa4 = 0 yields 

sin(8,/2)i”-PI COS(~,/~)~~+~~ + sin(8,/2)I”+rI cos(BS/2)1+I (-)I\++, 

d”“(Q) #4(x4)z + &yX$~A, #-qX4)fi4 (-)8g+~4-‘~84(~3+~3, 

*:$4-z -j -fy* 

Then 

Since in the present case (-)21s = (-) ~4 = - 1, the phase factor in the above 
relation is in fact independent of c34 and it is again equal to 734 . 

2. Branch Points at Y12 = 0 

In Eq. (A-111.3), we replace 7)34C?$14h,~, by T&&~++ , and the above 
argument holds replacing indices 3 and 4 by 1 and 2. 

3. Branch Points at T31 = 0 

From (A-111.3), replacing 

and using Eq. (11-26) for Gt,,) ; namely, 

Gl-,, ,c 
w1:A4& = 7131@~;4;:4~; , 

and 

&;:*;A; = --ri31G&:~;~; , 

with 
q31 = (-p--s1+f, 

we obtain (using the shorthand C’$ instead of C$~$~$~) 
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A. Branch point at qal = 0 

Let us study the behavior of Ci$ after one turn around val = 0. According to 
(A-111.2), 

sin((j,/2)IA’-p’I COS(LJ~/~)I~‘+~ 1 -4 (-)A’+fa’ sin(8,/2)lA’+p’ 1 COS(8,/2)~“‘-p’ I, 
, 

so that 

Then 

cgc- v)31) = r),lc~y(%l) (in the spin case considered). 

and the coefficients of G1 and G2 are uniform, as they should be. 

B. Branch point at I,& = 0 

Following the same procedure, one verifies that the behavior of X* is independent 
of eal and one finds 

so that again the crossing matrix element is regular at JIS1 = 0. 

4. Branch Points at Fa2 = 0 

In (A-111.3), we now replace 

and use (II-26), 

We turn the crank once more, and now change hi into -A; instead of A; into --h; 
in the above argument. 
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III. CONCLUSION 

Of course the same line can be followed to verify that the crossing-matrix 
elements between Fz and G1, G2 are also uniform. This has been done together 
with other spin configurations. We shall not reproduce here these rather tedious 
calculations. 

APPENDIX A-IV. PARTICULAR CASES: CONSTRAINTS AT s = 0 

(4 ml = m2 ; m3 # m4 , sl = s2 = sin 
The conclusions about the behaviors of T&4;T110 in the neighborhood of 9~~~ = 0, 

9)34 = 0 and #34 = 0 are the same as in the general case. But now there is a 
kinematical constraint at s = 0 because the pseudothreshold #12 coincides with C2. 

cos(xl + x2) and sin(x, + x2) behave like l/s. 

Furthermore, from the regularization (Eq. A-1.3) (s~/~)~QJ &&14;A1A2 = a + bs112, 
where a and b are kinematically finite at s = 0. 

Then (~l/~)~Qn MS A&:A,A~ = a’ + b’s1j2 where a’ and b’ are kinematically finite 
at s = 0. 

Thus (~l/~)~~‘n T” 7874;7112 is kinematically finite at s = 0. According to the crossing 
formula (IV-6), T&4E71Za N exp[-i(x, + x~)(~/~)(~~-~z)] near s = 0 with 
&lfx~) N (s)F1 if [@(s, t)]lj2 = &iml(m3” - m42) at s = 0. 

Conclusion. Near s = 0, 

if [@(s, t)]li2 = &iml(m32 - m42) at s = 0. 

(b) m3 = m4 ; m, f m2 ; s3 = s, = sf 

The same kind of results holds 

(i) #34 coincides with s = 0, 
(ii) (s1/2)2S~ Tt8+4;71,S is finite at s = 0, 

(iii) ei(x+4) N (s)F1 if [@(s, t)]l12 Is4 = fim3(m12 - mz2). 

Conclusion. Near s = 0, 

(~~/2)~8, T;S74;1,s N (s1/2)2sf+(~s-T4) 
(A-IV.2) 

if [@(s, t)]li2 = fim3(m12 - m2”) at s = 0. 
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(c) ml = m2 ; m3 = m4 

In this case both & and #Q,~ coincide with s1/2. Furthermore, the s = 0 
singularity appears simultaneously in cos xi , T:a7ki717e and T~7s-+1~~~~-Ta . For this 
reason it is simpler to return to helicity amplitudes. In the present case the 
functions of table XI reduce to 

cos x1 = -cos x2 = - (1 + ml2 - ms2)(-s)l12 
9&(4m12 - s)l12 

2m,(F& + st)li2 
‘ln X1 = ‘ln X2 = ~12(4m12 _ s)1/2 3 

cos x3 = -cos x4 = + (* +;;y--p~$)1’2 
13 3 

sin x3 = sin x4 = - 2m3(F~3 + st)lj2 
s3(4ms2 - s)l/2 ’ 

sin 3 = w2(-sy2 

2 5i3 *  

We deduce, in the neighborhood of s = 0, 

M&;A;A; = sin(0J2) I”-+” co~(0~/2)I”+“I &&:,;d; N (--~)l”-~‘l’~. (A-IV.3) 

Furthermore, from the regularization (A-IS), 

M,” A A A N ( s1’3f where 
1 
E = +1 if T(-)&*i = -1 

8 4: 12 E=O if q(-)K% = t-1: (A-lV.4) 

The inverse crossing relation reads 

@;A;;A;A; = (-l)“(P) (- 1p+254 e-~“(~k&) c ~“l(-xl);~ (fyx2);~ 
0) 1 a 

x d”*(x3);: d8”(-x4);t M;Sh4;A1A8 . (A-IV.5) 
8 * 

Using (A-IV.3) and (A-IV.4), we deduce the kinematical constraints at s = 0, 

c ~sl(--xl);: dyx2); dyX3);; d”“(-xJ;f M;81,;l,h, ~1’ (s~‘~)‘~‘-“’ 
IAl 1 2 II 1 

where A’ = Ai - hi and p’ = A; - A; . (A-IV.6) 
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APPENDIX A-V. EXAMPLES 

In this appendix, we test all the results obtained in this paper on examples 
for which one knows directly the relations between helicity amplitudes and 
invariant amplitudes supposed to enjoy Mandelstam analyticity properties. 

I. TEST OF THE REGULARIZATION OF HELICITY AMPLITUDES 

A. General Mass Case 

(1) 
f’ + O- + $’ + O- 2 3 4 

7) = +1. 

In terms of the usual invariant amplitudes A and B, supposed to be kinematically 
regular, helicity amplitudes are expressed by: 

where 

and 

WJi> = -jj (D’12(L,-,‘(i))A. IW2(L+(i))~.) 

We get, after some algebraic calculations: 

cos $ [[(ml + ml)(w3 + m,) - pk] (A - B m1 ; ms ) 

M to.*0 = 
+ BW2)h + ml)(w3 + ma) + pk]/ 

Pml%(wl + m&w, + mW2 

= M-)o:-to (parity invariance), 
(A-V.l) 

sin 2 1 [(ml + m&o, + ma) + pk] (A - B m1 l m3 ) 

Mao:-+o = 

= --M-to:to 

For Mtoito, one has 

A = B, P = 49 

-t B(s’/~K~~ + ml>& + m3) - pk]! 

Pm12m(~l + m&W3 + mW2 
(parity invariance). 

7,712 = +1, 1134 = -1, ml2 = 0, ms4 = 0. 
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From Eq. (11-17) one finds: 

&fz= = Al2 = 
2(w, + m&w3 + m3) [A + B (s~/~ - m1 ; m3 )] 

Pm12m3(wl + ml)(w3 + m3Y2 ’ 

i?a3a = S12 = 
2pk [--A + B (s~l/~ + m1 ; m3 )] 

Pm12m3(wl + m&w3 + m3W2 ’ 
One verifies directly that, for m, > m2 , m3 > m4 , 

qo.*o zz.r &$/2~ 
34 and I;&, = s~/~~$Y$Y, 34 

have no kinematical singularity, except for the s1i2 factor which occurs in alI 
BF -+ BF reactions. Using the fact that (wi + m,)li2 is singular at the pseudo- 
threshold when mi < mj, one treats easily the other mass configurations of table(IV), 

(2) o- + o- + g+ + I- 
= 1 2 3 4 7j -1. 

From 

where 

A4 A~A,;OO = ~%3K4 + W%J - (~2 - ~111 %(~a> 

) (2Y2 

we get 

M + *:oo = 
i 
&(m3 + m3 + u4 + ma) - 4 (ml - w2)(% + m3 - w4 - md 

- Bk ~0s e,[(w, + m3)(w4 + 4 - ~~11 

X Pm32m4(03 + m3)(04 + mJF2 

= -M+*:oo ; (A-V.2) 

Mg-litoo = 
Bk sin flsb3 + m3G4 + mJ + ~“1 = M-, t,oo 

[2m32m,(w3 + m3)(w4 + m4)]1/2 . ' 

Noting the identities 

(w3 + rn3)lj2 (w4 + rn4)li2 + (w3 - m3)l12 (wl - rnqY2 = &, 

(w3 + m3)1/2 (q + rnd112 - (CA+, - m3)1'2 (up - rnqY2 = #34 m3S;j72m4 , 

(w3 + m3)1/2 (q - mall2 + (co3 - m,)lf2 (co4 + mJ1i2 = vs4, 

(w3 + m3Y2 64 - rn4)l12 - (cog - rn3)li2 (w4 + m,)1/2 = qsa m3 - m4 
9/a ’ 
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we simplify (A-V.2) into 

1 

_ B hy12 ‘OS ‘8 
2s Cm3 + m4)], 

B8i2 sin W,, 
Mt-b:OO = 2s1/2(4m,m,)1/2 - 

Now, with h, = Q A4 = 4, 

A = 0, P = 0, 712 = +1, r/34 = +1, 

m - 0, 12 - m34 = +A 

d34 = cq2 = 0, and 934 = -53%2 = 2q+:oo 9 

G a:00 = cp34=934 

= (m30&2 [ A& - 5 Kt - u)(m, + 4 + (ml2 - m22)(m3 - m4)l] 

has no kinematical singularity. 
With, h, = &, h, = -+, 

h = 0, P = 1, 1112 = -1, r/34 = +1, 

m 12 = -1, m34 = 0, 

64 = a,, = 2~*-*:00 9 and G?34 = cc& = 0, 

has no kinematical singularity (compare with table IV); BB -+ m, 7 = - 1). 

B. Particular Mass Cases 

(1) ml=m3,m2=m4, m, # m2 (Z-N elastic scattering) 

With ml = m3, m2 = m, Eq. (A-V.1) become 

M to:*0 = cm ( I[ 
+ A+B S-m12-m22], E = w1 = w3, 

2 w = w2 = f.04, 

Mto;-to = sin ($[A -& + Bw], 

A2 to;to = A + B ’ - m12 - m22 , 
2 
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are kinematically regular (Table VI). 

(2) m, = m2 = m, m, # m4 

With m1 = m2 = m, Eq. (A-V.2) become 

1 
M* t:m = (4m,m31/2 [ AyB4 - B&& - 4m2)l12 $(m2 + ml], 

M 
B(s - 4m2)l12 sin e,9!r3, 

* t:oo = 4m,m, . 

(i) With A8 = +, X4 = Q, A1 + X2 + p is even, aI2 = 0, and &I12 = 2i@++:, 
= 2M,,,, is regular at s = 0 since cos 19~ cc s112. 

(ii) With hS = 3, & = -&, X1 + h, + p is odd, &I2 = 0, and 

aI2 = 2i@t-t:oo = [-B(s - 4m2)l12 #3J(msm4)1/2 

is regular at s = 0 (Table VII). 

(3) m, = m, = m, m3 = m4 = m’, m # m’ (wr -+ NR) 

With ml = m2 = m, m3 = m4 = m’, Eq. (A-V.2) become 

Mttioo = (p/m’) A - k cos BSB, 

Mistioo = (ks1/2/2m’) sin 8,B, 

@tt:oo=Mtt.,,,,(CXi odd, r)= -1) isregularat s=O, 
* 

-& iQf+m = $ (C Ai even, 7j = -1) is regular at s = 0 (Table IX). 
% 

(4) ml = m, = m, = m4 = m (nucleon-antinucleon elastic scattering) 

Volkov and Gribov (17) have written the five independent helicity amplitudes 
as functions of the invariant amplitudes, H$(i = 1, 5) (Scalar, vector, tensor, 
axial vector, pseudoscalar): 

M t t;+ t = 4p2Hl - 4m2 cos l?.$l, - 4m2 cos e,H, - 4m2H4 - sH, , 

M + t;-+-+ = -4p2Hl + 4m2 cos e,H, + 4 ($- + p2) cos e,H, - 4m2H4 - sH5, 
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M t-?:f-l = --s(l + cos 6,) Hz - 4m2(1 + cos 0,) H8 + 4p2(1 + cos 0,) Hb, 

M f-t;-li + = ~(1 - cos 6,) H2 + 4m2(1 - cos 03 H8 + 4pB(1 - cos 83 H4, 

M t f:t4 = -2 sin B,[s112mH2 + s112mH,]. 

One verifies directly that 

p2M t f:f f ’ PAM+ +++ , [co, (%)I-’ Mt+t-t9 [sin ($I-” M++:-+ t y 

and (~l/~)-l sin 8;lM, +.+-+ 

have no kinematical singularities (Table VII). 

II. APPLICATION AND TEST OF THE CROSSING MATRIX TO TN SCATTERING 

We want to write the crossing matrix between the amplitudes for the reactions 

N + 772 -+ Ns + n4, channel S, 

7~4 i- ~2 - Ns + ml, channel t. 

In this case a(P) = 0, and looking at Table XI, we get: 

COS X1 = - 0 + 5; P2) t , 2mW2 
sin x1 = 7 , 

cos x3 = -cos x1 ) sinx3 = -sinx,, 

with9 = 9r2 = 9” ; Y= 9& = [t(t - 4m2)11/2. 
F is negative on the s-physical region, so that x1 is negative and thus 

x3 = x1 + rr. Using parity conservation yields 

M(t”o’.,O .I = M!$.+ 9 Mi”d.eto = -MY;o.to ; 

M(t) 
f t;oo = -M(t;-t;oo 3 M(t) 

&f:oo 
= M’t’ 

-+ *;oo * 

The crossing matrix then reads 

Mlsd.to 2 . = i[sin x~M~)+.,, - cos xlM;Lf;,,J, 

Mg;-to = i[cos x~M~)~~, 4 sin xlMf&,J. 
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Check of the Crossing Relation 

The standard way of writing the crossing matrix for TN scattering consists 
in eliminating the invariant functions A and B between the two equations which 
give M,j~$~h10 and it@ 
we get 

Ai”; :oo (Section A-V. 1). After some algebraic manipulations, 

qLo = ; cos(eJ2) My),, - Es sin M(t) 
11 Pt t-):00 ’ 

Mg;-to . 

; x cos(8*/2) = F x -g = i sin x1 

and 

E, sin(OJ2) = (s + m2 - p2) 2N2 1 t Ill2 s112 . (s + m2 - cl”> t 
2s1/=9-‘y 

= --I 
Pt 9F 

= icosxl, 

so that our crossing matrix is correct in the TN case. In fact, such a comparison 
does not provide a test of the overall sign 77 (s) of the crossing matrix, since the 
relative sign between ZJ and u spinors is arbitrary. 

III. TESTS OF THE KINEMATICAL CONSTRAINTS 

(4 *7T+NiV 

(i) s = 4mN2. With th e e p o invariant amplitudes we obtain (IV-l), h 1 f 

F:, + 2m,pk cos e,F:- = 0 at s = 4mN2(4pk cos 8, = t - u). 

From (IV-12) the constraint reads 

P %+S4T;3,4 N p%f~4f~S+~4 in a vicinity of s = 4mN2 

if ei& N - p2. (A-V.3) 

Hence the constraint is pTi+ N ~2; i.e., p(Mi+ - iikfc) N_ ~2, or in terms 
of F:+ , FL defined by p&f;+ = F:, and pAI:- = FEs112pk sin 8,) 

F:, - is112pk sin e,Ft- = 0 at s = 4mN2. (A-V.4) 
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But in this vicinity, ipk sin 8, N -pk cos 0, and 9 = 2m,. So, (A-V.4) reads 

Fi, + 2mNpk cos d,F:- = 0 at s = 4m,‘. 

Remark. In a vicinity of s = 4rnNa where eiea N P--~, the constraint would be 
written pTk N p2, i.e., F:, + W2pk sin 8, N_ 0 at s = 4mN2 (A-V.5) but now 
ipk sin 8, N pk cos es and (A-V.5) is identical to (A-V.3). 

(ii) s = 0. Since Max I X’ - p’ 1 = 1, we deduce from (A-IV.6) that there 
is no constraint at s = 0, which agrees with the result obtained with the help 
of invariant amplitudes. 

(i) 9 = 0. From (IV.14) we obtain 

The constraint reads 

YT;, N Y2; i.e. YM:, + i9’MqL N 9’. 

The regularization (Table VI) allows us to write 

M:, = Ft, cos -$- 
( 1 

F:- 
Mi- = s1/2 sin (G), 

where Fi+ and Fi- are the two R.H.A. 
In the neighborhood of9 = 0, 

Y cos + N -9 sin (+). 
( 1 

Thus the constraint reads 

s1/2F1 
++ - F;- rv 9’. 

Now we can express F:, and FL as functions of A and B, 

F;, = j@;, = A + B(s - ;; - md2) , 
3 

F;- = sl%?i~- = 2m, s A ( + m32- rna2) + + (s + md8 - ms2) 

(A-V.6) 

and check easily that (A-V.6) holds both at sliz = m3 + m4 and s112 = m3 - m4 . 
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Remark. The constraint is nothing but i@:+ = a+ both at threshold and 
at pseudo-threshold, as noticed by Jones [16]. 

(c) miv -+ NN 
(i) s = 4m2. From (IV-14), 

if eie* behaves like p2, (where p2 = s - 4m2); i.e., 

P~TL;++ = p4, p2T$+:-- E p2, p2T&- N p2, and p2T:-;-+ N pa; 

(CPT conservation imply T++;-- = T--,++ , T-+,-+ = T+-:+-, T+-:-+ = T-+:+J. 
Let us define 

9% = %+:++ , 9’2 = M:+;-- , 93 = M;-;+- , 

~4 = ML-, , and (~6 = ML;,-. 

The constraints then read 

P2(n - 92) + p2(v3 + 9~) + 4ip2q5 = pa, 

-P2(9)1 - Y2) + P2(P)3 + P)4) = P2, 

P2(91 + 972) + P2(9)3 - 9%) N P2, 

P2(% + v2> - P2(9)3 - 9%) = P2 

if e% N - p2. 
As already remarked (Section A-V.l), 

(A-V.7) 

(A-V.@ 

(A-V.9) 

(A-V. 10) 

payI, p2v2, R/U + 4, d(l - z), and TJ~/s~/~(~ - z2Y2 

are kinematically regular (here, z = cos 8, , hence (1 - z)/2 = -t/2p2, 
1 + z = --u/2p9. 

Check. Following Gribov and Volkov (I7), the five invariant amplitudes 
can be expressed as functions of the five independent helicity amplitudes: 

fh = & [P2(n - 972) + p2z (* - r_) - f (s + 4m2) s1,2 r& e 1, l-z 

~2=+2L- 4m vs 
8pp” 1 + z l?Z -*sin’ a 1 



KINEMATICAL PROPERTIES OF HELICITY AMPLITUDES 313 

H,,-+L---- 934 s 9% 

8pe 1 + z l-2 m P/e sin e I ’ s 

H5 = - 

v4 +m2(ez+- 1-z +y--- 1 

ZP2S” P)6 
s1f2 sin e s 1 

We first notice that 

L&9)4= 
lfz l-z -2P2 (f rt T) = -2p2 [( %; 94) + yaO(p2)]. 

If we suppose that H4 is finite at p2 = 0, we deduce 

Furthermore, 

Hence 

P2(% - P)4) = P2. 

u + 2p2 t + 2p2 
p2z= -2=---’ 2 

(A-V. 11) 

P2Z (ez - 
v4 

-) = PY% + v4) + 2P2 (C + F) P2; l-z 

on the other hand, 

p2 sin 8, N fip2 cos 8,. 

Hence 

-p2z (8 + 4m3 v5 
rnN2 sin e = 4ip2qJ5 + p2950(p4). 

9 

HI now becomes 

In order to avoid a pole in HI , at p2 = 0 we must impose 

P2(Vl - v2) + P2(913 + RI + 4iP2y, + 2p2 ($ + T) p2 N pd. 
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With the help of (A-V. 1 I) we get 

PY% - F2) + PY’p3 + 9)4) + 4ip2% = P4- (A-V.12) 

On the other hand, the constraint 

(A-V.13) 

is necessary to cancel poles both in Hz and H3 . 
For H5 the constraint reads 

P2(% + v2) - [P”(% + 9)4) + 2ip2%1 - P2 

and with (A-V.13) we deduce 

P2(V1 + v2> N P2* (A-V.14) 

Eqs. (A-V. 1 l)-(A-V. 14) are obviously compatible with Eqs. (A-V.7)-(A-V. 10). 

(ii) Constraint at s = 0. From (A-IV.6) we deduce that there is a constraint 
if $(I h’ - 11’ I) is an integer. The maximum value of 1 X’ - ,u’ 1 is 2 and is reached 
when x’ = h: - Xi = &l and p’ = Xi - Xi = F 1; i.e., for instance when 
hi = hi = -8 and &. = hl = +Q. 

The constraint reads 

where 

,yll2p/2 
cos x1 = -cos x2 = -cos x3 = cos x4 = cos x = - [(s - 4m2)(t - 4rn2)]1/2 

and 

sin x1 = sin x2 = -sin x3 = -sin x4 = sin x = 
2m(4m2 - s - t)l12 

[(s - 4m2)(t - 4m2)]1/2 ’ 

so that x1 = x, x2 = r - x, x8 = x - 7~, x4 = -x. We now obtain 

(2 - sin2 x) v1 + sin2 xv2 - sin2 x’pS - sin2 ~~~ N s. 

Noticing that at s = 0, co9 x = 0, and sin2 x = + 1, the constraint takes up 
the following form: 

‘pl + ‘p2 - 9% - 934 = 0 at s=O. (A-V.15) 



KINEMATICAL PROPERTIES OF HELICITY AMPLITUDES 315 

Check: 

ff5=-& ~I+p12+$&(-z+f$j+ I 
+ finite term at s = 0. 

Noticing that 

pa(*v; z) (-Pz + m3 = -9)s (1 + -gj, 

p2(lv: z) (P2Z + m3 = - v4 (1 + +j, 

we must have the same condition (A-V. 15): y+ + q2 - q+ - v4 = 0 at s = 0 
in order to avoid a pole in H5 at s = 0. 
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