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G. CoHEN-TANNOUDII, A. MOREL, AND H. NAVELET

Service de Physique Théorique, Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette, France

Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos
invariant amplitudes which have been shown by Williams to be free from kinematical
singularities. This procedure allows to analyze the kinematical singularities of helicity
amplitudes and separate them out, which results in the definition of regularized helicity
amplitudes.

A crossing matrix for helicity amplitudes, is written down, corresponding to the con-
tinuation path used to cross spinor amplitudes. We verify explicitly that the corre-
sponding crossing matrix for regularized helicity amplitudes is uniform, as it should be.

Kinematical constraints which generalize, to the case of arbitrary spins and masses,
relations which must hold between helicity amplitudes at some values of the energy
variable in #N — =N, nw — NN, and NN — NN reactions, appear as a consequence
of the existence of poles in the crossing matrix between regularized helicity amplitudes.

I. INTRODUCTION

It is a common practice, in most studies concerning analyticity and crossing
properties of scattering amplitudes, to deal with the scattering of spinless, equal
mass, particles, and to speak of “the inessential complications due to spin”.
However spin effects are quite important. It is obvious, for instance, that one
must know explicitly the crossing matrix when working on exchange models
(bootstrap, peripheralism, Regge poles ...). In Regge-like models also, since the
only properties one can conjecture on the Regge residues are their analyticity
properties, it is important, in order not to make unreasonable assumptions,
to distinguish the kinematical singularities from the dynamical ones. It has also
been remarked that, in #N — #N, =7 — NN, NN — NN scatterings, the helicity
amplitudes must satisfy some relations which prevent them from introducing
spurious poles into invariant amplitudes which are supposed to enjoy the
Mandelstam analyticity properties. Such constraints put important restrictions
on any reasonable assumption made for the purpose of Reggeizing amplitudes
in the case of arbitrary spins and masses. [Cf. the ‘“conspiracy or evasion™
problem (7)].
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The purpose of this paper is three-fold:

(i) We find the kinematical singularities of the two-body helicity amplitudes.
(ii) We derive a crossing matrix for helicity amplitudes.

(iii) We generalize, to the case of arbitrary spins and masses, the kinematical
constraints already observed in #N — =N, w7 — NN and NN — NN reactions.

Section II is devoted to the search for the kinematical singularities of the
helicity amplitudes. The starting point is the work of Williams (2) who has shown
that the Joos expansion (3) of spinor amplitudes leads to invariant amplitudes
free from kinematical singularities." This means that these invariant amplitudes
are analytic functions of the invariants s and ¢ in a domain which is the image
of the analyticity domain of the spinor amplitudes in the four-momentum
components restricted to the mass-shell; conversely, the inverse image of the
analyticity domain in s and ¢ is the whole analyticity domain of the spinor
amplitude. The method we use to find the kinematical singularities of the helicity
amplitudes consists in writing them as linear combinations of the Joos invariant
amplitudes; the kinematical singularities are then the singularities of the coeffi-
cients. Appendix Al is devoted to the cases where some of the external masses
are equal and where the general analysis does not apply.

In Section III we show that the crossing path used by Bros, Epstein and Glaser (5)
to cross the spinor amplitudes is also suitable to perform crossing on helicity
amplitudes. We derive explicitly the corresponding crossing matrix (up to an
overall sign which is determined in Appendix A-II). Our crossing matrix appears
to differ by an overall phase from that of Trueman and Wick* (6). In
Appendix A-III, we check that the crossing matrix between regularized helicity
amplitudes (R.H.A) has no branch points, which provides a good test for the
correctness of our crossing matrix. Such a test is possible because, unlike some
authors (7), (8), who have been previously interested in such questions, we use a
direct method, independent from the crossing problem, to free helicity amplitudes
from their kinematical singularities.

Finally, we show in Section IV, (and in Appendix A-IV for special mass
configurations), how the cancellation of poles in the elements of the crossing
matrix for R.H.A provides a generalization of the kinematical constraints known
in particular cases. Here, we use as a tool the so-called transversity amplitudes
introduced by Kotanski (9).

All our results are explicitly tested (in Appendix A-V) on cases in which the
relations between invariant and helicity amplitudes are known, so that the
kinematical singularities, the crossing matrices and the kinematical constraints
can be directly derived.

1 The existence of such an expansion had been previously proved by K. Hepp (4).
*1bis See Table XI and footnote 8bls,
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I1. KINEMATICAL SINGULARITIES OF TWO-BODY HELICITY AMPLITUDES

1. NoTATIONS AND CONVENTIONS

A. Lorentz Transformations and SL(2, C) Matrices

We briefly recall the correspondence between the Lorentz transformations
and the unimodular, 2 X 2 matrices: with a four-vector p, (p? = p,* — p?) we
associate the 2 X 2 matrix p - ¢ = p,1 — p * o. It is easy to see that:

(a) detp - o= p?

(b) if 4 and B are two unimodular 2 X 2 matrices and p’ - 0 = Ap - oBT7,
then p'?2 = p% Thus (4, B) € [SL(2, C) X SL(2, C)]/Z?is associated with a complex
Lorentz transformation A :p —p’ = Ap.

(c) if BT = A, the Lorentz transformation / associated with (4, B) is real.

(d) BT = A~*corresponds to a complex rotation, which is real if furthermore
AL = A%

(¢) (4, B) and (—A, —B) correspond to the same Lorentz transformation

(f) p-6=p 0o=pl+p-aissuchthat(p-o)(p-6)=(p-6)(p-0)=pl

(g) for any unimodular 2 X 2 matrix 4, A7! = e"'de, where € = io,.

() p* =} Tr(e*p - 6).

With any 2 X 2, non singular matrix M, we associate the matrix D*(M)),
defined by (3)

DY(M),

_ o [+ @ (s — )2 — (M)A Plu—), (pt+A)
= et My [ RT] (M iy P2y ()
where Z = (MM + MiM3)/det M and P2%(Z) is the Jacobi function of the
first kind (/0). If one takes for M a unimodular matrix 4, (det M = 1), one
verifies that D*(4) is a finite-dimensional representation, of dimension 2s +- 1,
of the group SZ(2, C) of such matrices:

Ds(Al)ﬂ Ds(Az); = Ds(AlAz)ﬁ .

B. Spinor Amplitudes

We first recall the definition of spinor states (3). Let (£, %, , 7, , 7;) be the standard
frame. For a particle at rest, of spin s and mass m, we first define the state | s, A),
which transforms under a rotation (R, R-1) by

UR)| 5, X> = DAR)Y | 5, A,
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where A is any eigenvalue of the operator —(1/m) W - #i, . (W is the polarization
four-vector of the particle defined from the Poincaré group generators by (17)

W, = —ie,,.J"P°).
Let now L(p) be a Lorentz transformation? obeying

L(p) t = p/m, L(p) #; = ny(p),
L(p) i, = ny(p),  L(p) 7is = ny(p),

(p is the four momentum of the particle). We define the state | p, L(p), s, A> by
| p, L(p), 5, &> = UL(P)) | 5, 2.
It is easy to verify that this state transforms under a Lorentz transformation A by
UA)| p, L(p), 5, &> = DN(LY(Ap) AL(p))y | Ap, L(Ap), s, X"

where L-Y(/Ap) AL(p) is the so-called Wigner rotation (I2). Now, if L'(p) is an
other Lorentz transformation such that L(p) £ = p/m one finds

| p, L'(p), s, A> = DL-(p) L'(p))y | ps L(P), 5, XD
so that the state | p, 5, 4> = D(L-Y(p))} | p, L(p), s, A> can be defined indepen-

dently from L(p). Such a state is called a spinor state (3). It transforms simply
under a Lorentz transformation A by

U(A)l p, s, A4 = DS(A)ﬁ, I Apa 5y A’>'

It is also useful to define three other types of states by

| p, s, A> = D)4 | p, 5, A,

. A
l D, S, A> = D* (p_’n_o_.' 6_1)‘4, ] b, s, AI):

——— PN
| b, S9A> = D? (pma )/i | p, 5, A",

2 We shall use all along the phrase “Lorentz transformation L” to refer to the 2 X 2 unimodular
matrix L. The notation Lp, where p is a 4-vector is a shorthand for (1/2) Tr[oLp - oL!] [see
Sec. TI-1-A(h)].
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which, under a Lorentz transformation /, transform, respectively, according to
R N
U(A)| p, s, 4> = DXATN)4 | Ap, s, A7,
U p, s, A> = DA% | Ap, 5, A7,
N . N
U(A)i ps s, A> = DS(Af_l)ﬁ'l ] Ap, 5, AI>
We also define the conjugate bras by the following scalar products:

a4
<p, S,AIP’, S', AI> — Ss(p_p,) w’(np) S Ds(pm(f)

A

88’ ?

o~
<P, S, A IP', S,, A,> = 83(P - p’) iu’(n*p)— 833’8:' *

They transform by the complex conjugate matrices, as they should in such a way
that U(A) might be unitary.

Let us now consider the foliowing two body reaction: 1 + 2 — 3 4 4,
P1 + P2 = ps + p, . The spinor amplitude is the following quantity:

Myiy:4,4(PsPaP1P2) = {P3, 53, As sDas Sy A; | T prssis Ay pesSe, A,
where T is defined from the S-matrix by
S=1+i2m)8(py+ po —ps — ) T.
Now, since the two-body spinor states are simply obtained from the one-body

spinor states by tensor product, the Lorentz invariance of the interaction is
translated into the following covariance formula:

'/’tAaA.i:AlAz(p 3p 4p lp 2) = DSI(A)ji Dsz(A):i Dsﬁ(/l):i Ds‘(‘/‘l)ﬁi
X '/"AQA;:A;A;(AP:;APAAplApz), (11-2)

for any Lorentz transformation /.

Apart from this covariance property, the spinor amplitudes enjoy analyticity
properties, some of which can be for instance derived from axiomatic field theory,
where amplitudes emerge as Fourier transforms of vacuum expectation values
of time ordered products of field operators. We recall now the Joos expansion (3)
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of the spinor amplitude in terms of covariant polynomials, the coefficients of
which have been proved by Williams (2) to have no kinematical singularity:

-/’{A,AﬁAlA,(PsPAI’lPa) = ,; MZM (5 581,88, SA)falA,AsA‘ aIII,(S: t)
Ll Rl ]

trtep={], "
. —_— —
X (JLYE Yt (e(py  p)) Yt (epy py)  (11-3)
where (JZ,£,):™z is a Clebsch-Gordan coefficient and (J; £; 51, S35 S35 54)4,4,4,4
1434379

is the coupling coefficient for s;5,555, to give J, # defining the coupling mode.
Y, (e) is the solid spherical harmonic:

YA€) = [(2/ + I)(Z +47;-M )" (£ — M)! ]1/ 2 (e )M [(e2yr)r-1mi P}I_wlmfm(éa)
e = —e AT e i) b = i

e(p; , p;) is the semibivector associated with p; A p; :

e(7r» 27 = 3pOp; — pops — s X B EP: > pi)* = H(ps - pi)t — mim),
s=+{(py +p)% t=(pL— P>

as,(s, t) is the Joos invariant amplitude.

C. Helicity States and Amplitudes (13)

(@) One-particle states

" The definition of an helicity state corresponds to a particular choice for L(p).
For a one-particle state one chooses n,(p) = L(p) 7 to be in the 2-plane , p.

(b) Two-particle states

One Chooses ny(p,) and ng(p;) in the 2-plane p, , p, :

, miP — (p; - P)p;
ny(pi) = (i) = — mil(p: - P — m2P?E

where P = p, + p, . The helicity four-vector h;,(i), (h5(i)2 = —1), is completely
defined by the condition that, in the center-of-mass (C.M.) system (P = 0),
hy,(i) - p; is positive.
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(c) Helicity amplitudes for two-body reactions

Up to now, the axes ny(p;) were completely arbitrary. In a two-body reaction,
since p; + p, = ps + p, = P the 4-vector

— —2€4y00 P1"D2 DS’
¥ [D(s, £)]H/2

w (wwk = —1),

is orthogonal to p; and h;,(0) (F = 1,... 4).
[D(s, t) = O is the equation of the boundary of the physical region (see the
kinematics for two-body reaction given below). The minus sign, insures that, in

P
the C.M. frame, W = p; X p; (€123 = 1), if one chooses for P1/2 the positive
determination.]
In a two-body reaction, we choose for helicity amplitudes

np) =w (=1..4),
MASA.:AIAZ( > 1, u)

=< Ps, L15(3), 83, A3 s Pa, L15(4), 84, M| T'| py Lyy(1), 81, A Pes L12(2), 55, A

where
i pilm;
L) {ny)=¢{ w }
iy (i)

[The Lorentz transformations L,,(i) are completely defined by their action on
three 4-vectors. In the following, we shall very often omit to precise the action
of a Lorentz transformation on the first axis of a frame. Here, for example, we have

(Laa) )y = (PN = €y (L5) Wi}

It has been shown by Moussa and Stora (/4) that it is possible to write this
Lorentz transformation in the following form

. P ) ’

L) = B (G~ -25) Qulrn(P) > g)IP1 <, (11-4)
where B(p;/m; — p;/m;) is the following pure Lorentz transformation which takes
pi/m; onto p;/m; :

B2 ) (15 S 2B o 2]

m; m; mym;
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[P] is an arbitrary Lorentz transformation which takes £ onto P/s'/2

o — g—ia2 for i
1 for i=

0,5(ng(P) — q.;) is the Lorentz transformation with positive trace which leaves
P invariant, takes n,(P) = [P] %, onto w, and ny(P) = [P] %, onto

4 = (Pi —Di— L‘gp_;;g:‘&)‘}))
O R =iy

{q:; is in the 2-plane p; , p; and is orthogonal to p; + p;).
We can now express the helicity amplitudes in terms of spinor amplitudes.
From

| p, L(p), 5, ) = DXL(p))i | p,s, A)  and
<p, L(p), 5, | = DN(eL(p)TV <p, s, A| = D(L(p) )f<psA |,

with e = ig'2 , We get
M"s"ﬁ"ﬂn(s’ t,u)=D s1(1‘12(1));111 D 82(L12(2));4: D*(L,(3) ‘)f:

X DS‘(L12(4) 6);1: ’/’1,4344;41,42(173174171172)- (II'S)

It is useful to remark that our conventions for helicity amplitudes differ from
those of Jacob and Wick (13) by the fact that we do not multiply in the phase
factor (—1)*-* for particle 2 and particle 4. The parity-conservation condition
then reads

M AaAg:Alhz(Sa t,u) = n(— 1)2‘(3‘+A‘)M —As-—/h:—,\l—a\g(ss t, u), (I1-6)
where % = 7,7m4m374 is the product of intrinsic parities.

D. Kinematics of Two-Body Reactions

We now define the notations which will be used all along this paper for an
arbitrary two-body reaction (Fig. 1).
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Sy My 7y S31M31 73

Sp 5 Mpy M Sgr Mys Ty
FiG. 1.
s = (p1+ po)* = (b3 + P,
t = (pr— py)* = (P — P S+t+u=zmi29
3

u=(p— p) = (p: — ps)

S = ls — (m; + mPlls — (m; — m)PJP73,

ey = [s — (m; + m;)?]/2 : “threshold i, j”,

Yy = [s — (m; — m;)*JV/2 : “pseudo-threshold i, j”,

D(s, 1) = stu — s(my® — mPY(my? — mg?) — t(my® — m®)(my® — my®)
— (m?® + m — mg® — mA)(mPm?® — mytmgh),

&(s, t) = 0is the equation of the boundary of the physical region. P(s, ¢) is positive
inside this physical region.

s+ m:—mt

W= |

I

I
[(FS
BN
)
~.
wn
N
) =

Dy = 251/2 ’

P12 = Pn = k : C.M. initial momentum,
D3ss = Py3 = p : C.M. final momentum.

25t + 5% — 53 m? 4 (m? — mA)(ms? — m,®)
O, 03 = »

o8 e

_ @)D, 1)1

sin 0, = z

2. PRINCIPLE OF THE METHOD

A. Kinematical Singularities

We shall say that spin-dependent amplitudes have no kinematical singularities
if they have the same analyticity properties as the Joos invariant amplitudes



248 COHEN-TANNOUDJI, MOREL, AND NAVELET

(s, t). Our method to find the kinematical singularities of the helicity
amplitudes consists in writing them as linear combinations of the Joos invariant
amplitudes with coefficients functions of s and ¢:

M, = Y CiHs,1)a,,(s1). (11-7)

{61ty

The kinematical singilarities will then be the singularities of C{{(s, ¢). Let us
suppose, for instance, that the C coefficients have a singularity (a square-root
branch point, say) at s = s,; let us suppose moreover that s = s, is also a
dynamical singularity (for instance a threshold). Let

+4/; <+
{A} Z C{,\}1 2(‘9 t ) aglzz(sa t )

be two determinations of My,,. If 3 Cm ‘-’a,l,,l happen to be determinations of
another helicity amplitude My, corresponding to other helicities {A'}, then
Fpy = My, + My, has no kinematical singularity at s = s, . In fact,

AF=Ft—F = Z (Chy + C{'A})(“Za - a,:{,)
= Zg{A}Aaﬁfz :

the discontinuity 4F of F, is a linear combination of the dynamical dicontinuities
4a,, , with uniform coefficients €, = C§ + Cp -

In order to get expansions of the type (II-7) we use the covariance of the spinor
amplitudes Eq. (II-2) and the expression of the helicity amplitudes as functions
of spinor amplitudes (Eq. (II-5)), which leads to

M, , 0.5 1, 1) = DAL (D)} DAL, 2));2 DMAL,,(3) )32

X DAL (A) €yt M, 4 .4 4(APsApAp,Ap)  (I1-8)

for any Lorentz transformation /. We finally get an expansion of the type (II-7)
by using the Joos expansion (II-3) of ), 4,4, Ag(/lpsllp‘l/lpl/lpz). The choice
of A will be adapted to the study of each singularity in such a way that this
singularity may be factored out as easily as possible.

Before doing practical calculations, it is useful to try and guess ‘what smgularltxes
we shall meet. For any singularity in s and/or ¢, it is possible to find a Lorentz
transformation /A such that this singularity does not appear in the Joos expansion
of My 4,:4,4,(APsApsAp1Ap,). So, the only singularities one cannot avoid are
those whlch appear in D(AL,,(i)). Now, the singularities of a Lorentz transforma-
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tion which takes the standard frame onto some frame {»;} include those of the
basis vectors n; of this frame. Thus, the kinematical singularities of the helicity
amplitudes are at least those of the 4-vectors of the helicity frames, that is [cf. the
definition of h,,(i) and w in Section II-1-C-(b) and (¢)],

D(s, t) = 0,

(2 P)* — mi2P?)2 = O
(s P)* — m?PPP2 = 0

[(ps - P2 —m?P? ]2 =0 4 o
[(ps- PP —m?PH 2 =0 oo

Furthermore, since h,,(i) changes sign when one changes the determinations of ¥,
(if i = 1,2) or S (if i = 3, 4), one can guess that, in order to free the helicity
amplitudes from kinematical singularities at %, = 0 or %5 =0, it will be
necessary to associate M, ., With M, ., s o M), .00, With M_,_, .5, -
On the contrary since the helicity 4-vectors do not have the @(s, ) = 0 singularity,
this singularity will be picked up without associating different amplitudes.

B. Explicit Choices for A.

Let us suppose that /A takes some frame R onto the standard frame. First we
note that Ap -#; = Ap - An(R) = p - n(R) so that the components of Ap in
the standard frame are equal to those of p in the frame R. Secondly, all the frames
which we use are such that the center of mass is at rest (P = 0). So, we choose
in Eq. (II-4) [P] = A~ Let us now, for instance, evaluate AL,(1):

P » PP
AL(1) = 4B (S > ) D |1B) = o (7]
ny(P) —>w
AP A ;4 Ay
=B(?1—/2——> n‘fl) A-Qm[P]:B(t—’%)Qm iy — Ay
1 1 iy —> Aw

AL, (p,) is thus the product of a boost by a rotation. Equivalently it is equal to
0B (i — szlAh/ml)-

'For the general mass case, that is my —my%0, mg— my%~0,
my — my = mg — my, my + my 7 mg + my, we need two different expansions
using two frames R. We write down the corresponding expansions in Tables I and II.
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TABLE 1

ExpLicit FormM A oF Eq. (I1-8) CORRESPONDING TO FRAME R;,
WaicH 18 ESPECIALLY CONVENIENT FOR THE STUDY OF KINEMATICAL SINGULARITIES
AT &3 = 0 IN THE GENERAL MAss CASE.

Frame R,
I(R) = P[s'®,  ng(R)=w, ny(R) =gy,

N 1/2w, p sin 8, N 1/2e,p sin 6,
e(Apy , Aps) = § —ij2kp sin 6, e(Ap; , Aps) = {if2kp sin 6,
1/2(wn p cos 0, — wzk) 1/2(wyp cos 8, + wek)
AL;(1) = B, where R,(¢) = cos(p/2) — ioy sin(e/2)

AL(2) = Rv(‘”) B,
AL (3) = R,(B,) By

m; + w; — pyoy (i =L26ej=2 1)
AL4) = R0, + 7) B,

©T Bmos + moPE \i = 3,455 =4,3

Expansion A

M, a0,= Y. (=) tatutds DB, )gxlpﬂz(%);): D'a(Bs);;: DB
Ag, Ay
X 02y, Ao 2 a0 (psingyParial

£y, My+Mo=Ay—Ag+Agt A,
X (@) + k) Mil(w, — ek) M2l Py[t, (wyp cos 8, — wgk)] Pylu, (wyp cos 8, + wik)],
where € is a numerical coefficient,

¢, and e, are the signs of M, and M, .
P,lt, z] and P,[u, z] are polynomials in ¢ and z, and in u and z, respectively.

3. GENERAL-MAss CASE. KINEMATICAL SINGULARITIES AT D(s,7) = 0

Since D(s,t) = 0 implies |cos §,| = 1, the terms which are singular at
D(s, t) = 0 are cos (6,/2) and sin(6,/2). Using the definition of the D matrices,
(Eq. II-1), we evaluate the power of these quantities in expansion A [Eq. (II-9) of
Table I; we would get the same results with expansion B]:

— : | Ag+agl+]Ag—Agl+] My |+ M;)
Mo, = z sin(,/2)'4sTsi 14 1l+[M

X 005(08/2)143-/\,,1+|A,+A4I+IM1|+|M,| R(s, t),
where R(s, ¢) is kinematically regular® at 9(s, t) = 0.

3 From now on we shall use the following terminology: ‘kinematically uniform at...” for
“without a kinematical branch point at...””, “kinematically finite at...” for “finite in the absence
of a dynamical infinity at” ,“kinematically regular at...” for “without either a kinematical branch
point or a pole at...”,
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TABLE 1I

Expricit ForM B ofF EqQ. (II-8) CORRESPONDING TO FRAME Ry,
WHICH 1S ESPECIALLY CONVENIENT FOR THE STUDY OF KINEMATICAL SINGULARITIES
AT &3, = 0 IN THE GENERAL MAss CASE.

Frame Ry
H(R) = Pls\2, ny(R) = w, ny(R) = gy

1/2wgk sin 6, —12wgk sin 8,
——— e e ——————
e(Apy , Aps) = { —if2kp sin 6, e(Ap, , Apg) = {ij2kp sin 6,
1/2(wnp — wsk cos 6,) 1/2(wyp + wsk cos b)),

ALy,(1) = R (—86,) By
ALy(2) = R(—0,+ m) B,
AL,,(3) = B,

AL ;(4) = R/(7) B,

Expansion B
M Aty =AZA (—)sa—tategtdy D’I(Bl):\\: DB, );‘22 D‘s(Bs)::‘\:; D"A(BA):;:
1“2
X du(—0)t dx(—0)4s y €y (s, Dk sin 0) M1+ M3l (T1-10)

L1, 89 Myt Mo=A + Ay A3 D,

X (w3 + €.p)Mil(ws + €,p) M2l P{[t, (wip — wsk cos 8,)] Pslu, (wgp + wgk cos 6,)]

where €’ is a numerical coefficient,
€; and ¢, are the signs of M, and M, .
P[t, z}, P [u, z] are polynomials in ¢ and z, and in « and z, respectively.

Let
&i:]A3+)\3|+|A4—)\4]+|M1|+|M2|
:,A3+A3l+'A4-_)‘4|+,Mll+IAI—A2+A3+A4—MIL
g=|A3—/\3l—{-|A4+)\4I+IM1[—I—|M2I
=|A3-—/\3I+IA4+)\4I+]M1|+|/\1—/\2+A3+A4-—M1I;

o/ and # are obviously positive integers.

Any dummy index (4, , 4,, M,) appears twice in the four terms of both 27 and 4,
so that, if one varies the value of one index by one unit, &7 (resp. %) is changed
into & 42, & or & — 2 (resp. #+ 2, % or # — 2). Now, for Ay = —A,,
Ay = Ay, My = 0, o reduces to | A; — A, — A; + A, | and cannot decrease, and
for A3 = 23, Ay = —A,, My = 0 # reduces to { A, — A, + Ay — A, ] and cannot
decrease.

595/46/2-4
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Thus
Mmin-:[)‘_l‘-h gmlnzlA+ﬂ|
v ‘(AZAI_)Q’ f"’=)‘3_/\4),

and other values of &/ and # differ from these by positive even integers. Hence:

Mg, = sin(0,/2)" 7 cos(0,/2) ! B,y 5 (1I-11)

where M, .., is kinematically regular at ¥(s, 1) = O.

This result was already known (7), (8), although, to our knowledge, it had
not been proved. What we now know, in particular, is that the convergence domain
in the cos 8, plane of the partial-wave expansion of the helicity amplitude

M0, = Z (T + 1) M) 50, 4(0,)%
= sin(6,/2)* ! cos(8,/2)***1 Y. af o Py 1 (cos 6,)
J

(where m = Max({A],| ul) and aj, . ,, differs from My, ., by numerical
factors) is identical to that of the expansion

ak’ Ag3dgA Py:,{‘”““l(cos 6,).
; 3147112

Namely, via a well-known theorem of Szegd [Theorem g.1.1, p. 243 of Ref. (10)],
on the domain of convergence of expansions in terms of orthogonal polynomials,
the- convergence .domain_of. M, , ., ,, is completely characterized by dynamical
singularities.

4. KINEMATICAL SINGULARITIES AT THRESHOLDS AND PSEUDO-THRESHOLDS———
(GENERAL ‘Mass CASE .
A. Types of singularities at s = (m; + my)® and s = (my + m,)?

Using Expansion A or B one finds that the following terms are singular at
s = 0 and S = 0.

w; + My — Py )2"‘ _ ( w; + m; + pij )_2”"

(a) D*(B, )I“ = ( 2mdw; 4+ m)]*? [2m{w; + my)]/2

I

(62 o mg + ) o my — my) L2
w; + m; = 35172 i=234]

»

1
3

2,
4

l

~
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If we choose, as we shall always do, the positive determination of s'/2 in the
neighborhood of s = (m; + m;)?, one finds that

for s = (m; + m,)? w; + m; = 2m,;,
gw,-—{—mi:O if m; >m;,

for s = (m; — m;)? .
( * ’) wi+m¢=2m,- if m; > m;,

Summarizing, one sees that, if one turns around s = (m; + m;)? using the path
shown in Fig. 2),

w; + M — Py )ui
( 2myew; + m)P/?

is changed into

( w; + My — Py )‘“f
2mfw; + m)]'/2

and that, if one turns around s = (m; — m;)? using the path shown in Fig. 3,

* S e

2

s=0 e (m, -m.)

FiG. 3.

w; + My — Ppij )2""
( R2myw; + m)1'2

is changed into

( w; + My — Py

Rm(w; + m)]'/2
w; + My — Py

(—1)2A ( Rmw; + m)Pe

-21;
) if m; >my,

-2
) if m; > m;.

(b) cos 8, and sin 8, are singular and behave like (F,%5) "
(c) d%(0,) is singular since cos 4, is.



254 COHEN-TANNOUDJI, MOREL, AND NAVELET

B. Kinematical Branch Points at Thresholds and Pseudo-Thresholds.

(a) Thresholds

§ = (mg + m,)> It is easy to see that in expansion A [Eq. (II-9) of Table I],

all the terms which appear in the Joos expansion are regular at s = (my + m,)

Now, if one turns around s = (m3; 4 m,)* using the path shown on Fig. 2,
the following changes occur:

05—*03:}:77’ P"’—P;

w; +m;—p w; +mg —p \Fh .
(Bt mgi®) (G tmgim) o =4

Then, using Expansion A one sees that!
M AgAgiagd 2(%4)

= (__)82’1\2+83+/\3 sin(gs/z)—la—p} cos(b, /2)_‘ P

wyt+my—p % wy+my—p -2, 0 A g8 .
X ( [2my(ws + my)] /2 ) ( Rmy(w, + my)? ) d ((7’:;)_,\a d ‘(03),\‘

is changed into:

—=|A+g]

. s . 40, ~[A—u] 0,
Mz\sf\:;;z\y\z(_ <P34) = (") g Ayt Sata sim (—%:j—) [Vo}] ( :2i: ﬂ)

wWg + Mg — p b Wy + my—p 2 3g Ay 54 Ay ...
o T i) (Domor T ) €O & 8, 46, £

(the dots stand for quantities which are kinematically regular at s == (3 + m,)?).
It is then easy to find

MA3A4:A1A2(— Paq) = 1734M—A3—A4:/11/\3(‘P34); MNsa = (-~ l)srs‘ﬂ- (11-12)

s = (my 4+ my)% Turning around s = (m; + m,)?* along the path shown on
Fig. 2 and using Expansion B, [Eq. (II-10) of Table II] one finds in the same way

M/\s/\,;;/\y\z(- Pre) = "712Mas»\4;—,\1—a2(%2 e = () (11-13)
4 When we study the behavior of a function £ in the neighborhood of a square root branch

point z = 0, we write for convenience f(z!/?) and f(—2z'/2) for the two determinations fT and f11
of f at point z.
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(b) Pseudo-thresholds
The reasoning is quite the same. One finds
s = (my — m,)?

if my > my M,\m:/\lxa(_‘ﬁm) = ngy(—)" M—Aa—/\,;h/\z(‘ﬁu)

(11-14)
if my >m, M, iap(— 30 = Naa(— ) M_, (s
s = (my — my)?
if my >m MAaa,,;alag(‘/‘lz) = pa(—)*" MASA,;—,\I—Ag(sl’xz)
(1II-15)

if my >m, MA3A4:A1A2(_ ) = Mya(—)*" MA3A4;—A1—A3(¢12)

C. Consequences of Parity Conservation

From formulas (II-12)~(II-15) it is possible to find kinematically ‘“uniform”
linear combinations of the M’s. We define

A,ls).4/\1/\2 = MA:,A‘,:AIAZ + 7]34M—/\3-—/\4:/\1A2

+ ’712[M,\3a4;—al—/12 + Nas(—A1, —Ag) M—a,—ad;—al—aa],
B,\s.mm = M13A4;A1,\2 — 7)34M—A3~/\4;/\1Ag

+ ’712[M,\8A4;—A1—/\2 — Nga(—Ay, —Ay) M—A,—A4;—A1—A,],
C/\,a4/\1/\2 = MA3A4;/\1A2 + 7]34M—A3—a,:A,a2

- ﬂlz[MAsa,;—A,—ag — Naa(—Ar, —Ay) M—As—a4;—a1—a3]’
‘Df‘sh/‘lﬂz = Mﬂah;"y‘z - 7734M~/\a—34i"1/‘2

- 7712[M AgAgi—Ag—Ag + 7734(—)‘1 ’ “)\2) M—,\a—h;—,\l-/\,], (1I-16)
where

Naa(—A, —Ay) = (—)sa—sr/‘-
Then A, .., > P B, » P Crgg, » and P12 9ot Daja o, do not have any

kinematical branch point either at s = (m; + m,)? or at s = (m; + m,)2

Now, parity invariance [Eq. (II-6)] implies relations between M_\ o or—a,
and M, , , ,, , namely,

-

— T3+ W)
M—Aa—/\4—/\1—)\2 = p(—1)ZstH) M,\s,\,,\lag s

where 7 is the product of intrinsic parities.
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Hence

N1aNaa(— A “/\2)

and

MM Aghg—Ap—dg — ’77734M-,\,,—14,\1,12 .

—Ag—Ag—A;—dz nMAs/‘A)*lf\z

So, by associating only two different helicity amplitudes, it is possible to write
down amplitudes free of kinematical branch points at thresholds.

Let

Ay = Mo, + 7]34M —Ag—AgidyAg >
By = MA3A4;A1A, - ’734M-A,—A4;,\1a2 s
e = My iy + MaMogi—a—y »

&y = M,\,,M:Ala, - 7)12M/\,A4:—A1—A3 ;

TABLE III

(1I-17)

AMPLITUDES FREE OF KINEMATICAL POINTS AT 5 = (m; 4= m,)? AND s = (my £ m1y)* ¢

Intrinsic parity 7= +1 7= —1
configuration Ay = Sy Ay = B,

Spin Bay = B2 Ba = Ay,
Configuration
BB — BB or
BF — B’F’ with A S LS AB SR, LA,
mg < Mp and myg < Mp’
BB — FF or
BF — B'F’ with Yl S e 1B, VIR, S A,
mg > mg and mp < myp
FF — BB or
BF — B’F’ with Y1, , 9IS 0B, VIR, ot 5:;1 o,

mg < mg and mp > mg

FF — FF or
BF — B'F’ with

mp < mp and mg: < mg*

~1,
‘/‘u '/‘u 34’ ?)18 ?’u gsa.

~1, -1 ~1~1of
l/'1 34 * ‘Plz ‘l'sa 84

¢ of and # are defined in Eq. (II-17).
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if =41, Ay = Sy,

-@34 = B2,
if 9=-—1, Ay = Ba»
ga‘; = '%2-

ThUS, if n= +1 '%4 or %2 and ?’;21(}’;41(‘@34 or 3312)9 (II'IS)
if 7=-—1 P(Byy OF  SAy) and P2y OF By),

do not have any kinematical branch point either at s = (my -+ m,)? or at
s = (my + my).

We easily derive results analogous to (II-18) for the case of pseudothresholds,
using (II-14) and (II-15). The amplitudes kinematically uniform at s = (m, + m,)?
and s = (m; 4 m,)?, are exhibited in Table III.

D. Kinematical Poles at Thresholds and Pseudo-Thresholds—General Mass Case

We now look for the possible kinematical poles and zeros at thresholds and
pseudo-thresholds, which means that we look for the behavior of the helicity
amplitudes near #}, = 0 and %, = 0 assuming that the Joos invariant amplitudes

are finite and nonzero.
(a) Near S, = 0 using Expansion A (Table I), one sees that
(i) The elements of B; are finite (their moduli are close to unity),
(ii) The semibivectors are finite.

Moreover, cos 8, < (F)™, cos(6,/2) and sin(8,/2) o« (F,,)-1/2. d¥(8) being a
homogeneous polynomial of degree 2s in sin(#/2) and cos(6/2), one finds that:

. 1 (™ae
M0, Myy = 83+ 5, — Max(| A, | u ). (11-19)
e

(b) Near ¥, = 0 using the same reasoning on Expansion B (Table II)
one finds

M2

- 1
M"a"4;f‘1"2 o ( ‘9012 ) My =85 + 8 — Max(] A ly | I D (II'2O)

It is quite easy, then, to put together these results and those concerning uniform-
ization at kinematical branch points (Table IIT). For instance let us consider
the case BB — BB, = +1. Near %, = 0, &, can be written

oge 1+ ﬁwyiz
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where both oy, and B,, are kinematically regular at %, = 0. Now, since &, is
kinematically uniform at %, = 0,

Bauu=0  if my,is even,
g, =0  if my,is odd,
so that, in any case,
Sy, is kinematically regular at %, = 0. (We have used the notation N*
to denote N if N is an even integer and N 4 1 if N is an odd integer).
Other cases are treated on the same way. All results are summarized in Table IV,

together with those which are related to the behavior at @ = 0 [Eq. (II-11)] and
at s = 0 (see below).

5. KINEMATICAL SINGULARITIES AT § = 0

We now study a possible singularity of helicity amplitudes which does not
appear in the basis-vectors of the helicity frames, but in Expansions A and B.

A. Behavior of the Boosts B, near s = 0
We have

(Gntartmore) = () = (=S =)

The behavior of this quantity near s = 0 depends on the determination of %;.
For small |s|, &%; = —e(| m?® — m;%| 4+ O(s)), where ¢ = 41 depending on
the way chosen to define the cuts of ¥;; in the s plane; for instance, e = 41
if &, is cut as shown in Fig. 4.

%

s=0 (m -my? {m; « m)?

FiG. 4.

Let us now define ¢;; = (m; — m;)/| m; — m; |; then
[(w; — pis)/ms] oc (s1/2)<e, (I1-21)

B. Behavior of cos 0,

St — ) + (md — md)(mgt — my?) .
1-22
s ({1-22)

cos 0, =
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TABLE 1V

Notations:
A=X =2 Bo=2—Ag Mg = (=) na = (—)"ath
1 = nmams7, : product of intrinsic parities.
my, = sy + 55 — Max(| A}, | p1); my = 53+ ss — Max(( A, | p])

N if N is even
Nt =
3N +1 if Nisodd
P = [s — (m; + m,)T /2 Yu = [s — (me—m,)? 1/

- L {0\ 1Aul 0, \~1Mul
M piiap, = Sin (T) cos ( 5 ) M)agiddg

Amplitudes free of kinematical singularities in the general mass case:

NoaM_p -2y
1 — (1/2)|A1+|a b d v,
FA3A4;/\1/\2 S A MAsAU"17‘2+ or
1MmeM, Ngdgi—A—Ay
TsaM )\
2 = (1/2)|A|+ |1 Yol | M —
F AgAgidg Ay Sl I'/“;,‘sz‘ﬁaﬁs, 1‘44\3/\‘,;111)12 or

"17712M,\3A‘;—,\1—,\2

Exponents b 4 8 5
. a c a
Reactions 4
BB — BBor _ _ 5 B . . . .
BF — B'F’ 7=+l my, M, my,  mg mi -1 mi -1 My~ 1 m a1
mp > mg 1 +_1 " _ R _ _ .
mp > mg = mg=1 mi=1 my my o, my =1 m -1
BB —FF or " . +
= - ~ - ~ - - - +
BF — B'F’ K +1 mlz mlz mal 1 mx4 my, 1 e 1 maa m34 1
my > mg 1 + 1 mt + +
e < mg == my=1 m-1 my -1 mg My My my  my -1
FF — BBor ; . ~ ~ - . . .
BFRF 17 + My~ My my  omy omy omp -1 mg -1 mi =1
Mg < Mg 1 - + - e + +
mp > my = My omp=loomy omy omp =1 my om -1 my -1
FF — FF or 1 .« 1 _ . _ . .
BF >gF 17 + me= mg M=l omy omp omi-1 omg omg -1
mp < mp 1 - + + - ~ +
mp < mpy m= my,  my-1 omi -1 mp omp -1 mp my,  m -1
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then at
s~ 0, cos 0, = €65, + O(5) (11-22)

(if %, and ¥4, are cut in the same way).

C. Behavior of the Semibivectors

_
e(Ap, , Ap.)? = e;® + e,® + e2 = f(t) : a polynomial in ¢,
—_—
e(dp, , Apy)* = e® + ¢;* + e, = g(u) : a polynomial in u.
In the frame R, for instance, e;® + e,2 = $m,%p?sin? f, which is finite, regular,

and, in general, nonzero at s = 0; thus e; is also finite and regular at 5 = 0.
So is e, for the same reason.

D. Kinematical Behavior at s = 0

Using expansion A (expansion B would give the same result), one finds that
M0, behaves near s = 0 as

—e€h + €epphy + €eguly — ez,
+ | A + exp€auls | + | Ay — €rp€aidy | + €€o(M; + Mp)(s'3). ,
Using My, + M, = A, — A, + A + A, , we write this exponent in the form
| 45 + E125:34’\3 | + eers(A4s + €12‘s4A3) + |4y — €12534)‘4 | 4 €€rp(4, — E12534)\4),

which is a nonnegative even integer which reaches the value zero for A; = —e€z€30A,
and A, = €565\, . Thus, the helicity amplitudes do not have any kinematical
singularity at s = 0, whatever the spin configuration may be.

However

Maaa,;m,, = Sin(es/z)_lA—“l cos(03/2)"|“’“' M Aghgidghs
(Eq. (I1-11)) is singular at s = 0 since it behaves like
(s /2)"”“12‘34#1 .

Now, since in the case BF — B'F’ (and in this case only) [A — u|and [A + pu
differ by an odd integer, it is impossible in this case to free the helicity amplitudes
from their kinematical singularities simultaneously at @(s,t) =0, S, = 0,
Sy = 0,and s = 0.
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To summarize, &%, and %,, [Eq. (II-17)] behave near s = 0 like
(sl/z)—(!/\lﬂnl)[a(s, 1)+ (sl/z)len(IAl.lul) ﬁ(s, 1], (11-23)

where o(s, 1) and B(s, £) have no kinematical singularities at s = 0.

,
6. GENERAL MASS CASE: SUMMARY AND CONCLUSIONS

We summarize the results obtained on the kinematical singularities of the
helicity amplitudes in the general mass case. We write down in Table II-4 two
amplitudes Fy, ., and Fy, .., which do not have any kinematical branch
points, poles and zeros. However, in the case BF — BF we must add some remarks.
Looking at Table IV, one sees that:

(a) There remains a kinematical square root branch point at s = 0.

(b) The regularization at %, == 0 and %, = 0 depends on the choice
of the determination of s'/2. The results given here are obtained with the deter-
mination of s/? which is positive near s = (m; + m;)? (see Fig. 2 and 3). With
the other determination we would get slightly different results: since the helicity
amplitudes themselves are kinematically regular at s = 0, it is easy to relate
Fraana(—sY to ER, 5 (s17%); we find:

Flpap—s") = ()t aanl g, (517 (I1-24)

These relations can be interpreted [as already done by Y. Hara (7)] as a general-
ization of the Mac Dowell reciprocity relation (15). In fact, Eq. (II-23) provides
more information than this generalized Mac Dowell relation (II-24) since it gives
the actual behavior of R.H.A near s = 0.

If parity is not conserved, we have, in general, N linearly independent
amplitudes a,,, , where N = II(2s; + 1). Parity conservation implies relations
between the a’s which are still unknown in the general case, but can be easily
expressed (Equation (II-6)) in terms of helicity amplitudes. The corresponding
relations between the R.H.A take on the same form, namely

Fipgigy = (=) FL L, - (11-25)

However, we still have too many amplitudes, since for a given set of A’s, we have
defined two combinations of M Ay and M—Am or M fR But it is obvious, from
the definition of the F’s, that

F :3/\4;/\11\2 = :tnMFiAs—/\,,:/\l/\g = :t”)”th:m;—Al—,\z . (11-26)
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The second identity expresses parity conservation. Taking into account these
relations, one easily verifies that when parity is conserved, the right number of
linearly independent amplitudes can be chosen out of the set of 2N regularized
helicity amplitudes.

As already pointed out, the same kind of regularization procedure can be
applied if parity is not conserved. Uniformization at thresholds and pseudo-
thresholds could be exphcltly achieved from Eq. (II-16), for four combinations
of M,\ ) s A_M . M,\f—/\ , M_,‘,_A Behavior at s = 0 would again depend on
the spm configuration and on the value of | A| 4 | & |. Kinematical poles would
then be canceled out by the same type of powers of @y, s, @ss, ¥, and s*/2,
since the orders of possible poles are functions of | A| and | i | only. We would
now arrive at 4N R.H.A, F} raaidpgr L =12, 3, 4. It is easily verified on (II-16) that,
for each i, FZ,, , F; PN F_;l -, are s1mp1y related to F,f », S0 that N linearly
independent amplitudes FA riry €N e selected out.

The results of this section devoted to the regularization of the helicity amplitudes
can now be summarized as follows:

(1) New functions Fj, are defined (i = 1,2 if parity is conserved,
i=1,2,3,4 if not). They are related to the Joos amplitudes g,,, through
polynomials in s, ¢, u.5

(2) From the set of functions F{A} , one can pick out a set of linearly
independent amplitudes, which we denote &, . The result of this section can be
formally written as

=3 lz C{tj\izalllﬂ , (II'27)

¢ . P
where the C{,{g’ coefficients are polynomials in s, ¢, 1.5

7. PARTICULAR CASES: EQUALITIES BETWEEN EXTERNAL MASSES

Whenever two or more kinematical singularities coincide, the general
study does not apply. For instance, one can see that in elastic scattering
(my = my, my = m,, S5 = %), the general reasoning using expansions 4 and
B fails since the third component of the two involved semibivectors are singular
at Yy = S, = 0. It will therefore be necessary to find another expansion.
The particular mass configurations and the kinematical singularities which,
correspondingly, need a special study are shown in Table (V). Results are
summarized in Tables VI-X and details on their derivation are given in
Appendix A-I.

5 (If s corresponds to a BF state, s has to be replaced by s'/2 in this statement),
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TABLE V

KINEMATIC SINGULARITIES AND MaAss CONFIGURATION®

Kinematical singularities
needing a special study
s=0 Fra=0 Fo =0
Particular
mass configuration
my = ms
m; = My m F nm X X
(see Table VI)
m = ny my # ny X X
(see Table VII)
mg = ny m F# my X X
(see Table VIII)
m; = m,=m
my =my = n' m#m X X X
(see Table IX)
ny = mg=mg =M =m X X X
(see Table X)

¢ The symbol x indicates the singularities which need a special study in the corresponding
particular mass configurations.

TABLE VI

AMPLITUDE FREE OF KINEMATICAL SINGULARITIES FOR

My = Mgy, =My my Emyn = +lis =5 =55 =5=75.

(s 20T ),

I =Fp=F m=s-+¥—Max(A], | nl)
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TABLE VII

-AMPLITUDES FREE OF KINEMATICAL SINGULARITIES FOR My = M, = M} My 5= My §; = Sp = Sin.»®

+ 7M. ~Ag=AgiAA,
1 = (s1/2)*" k¥ 2 & M
FA3A4;AIAZ = (11" kg5, MAa'\A;'H’\z or -
: + "I"th)\s/\‘;—/\l—z\2

s — sy a2,
2 = (sl/Dyar LBry .
F; AgAgiAgA, 10 kP 9o | Magap, O

- ’7"7le/\31\‘;—/\1-—/\2

Values of the

exponents o b y g
Spin and
parity configuration
= - - + L
A+ Az + peven 7=+l @s,) m (2s,) 1 mi, — 1
7=l (2sin)+ -1 m:-z ~1 (Zsm)_ M
= +1 + - _ .
Mt htpodd 17T @s,)* — 1 g, @s,) =1
n=-1 @s,)” my, ~ 1 @2s )+ — 1 m,

% ¢,d, v, 8 are defined as in the general case (See Table IV).
Yk o= §(s — dm®)'r,
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TABLE VIII

AMPLITUDES FREE OF KINEMATICAL SINGULARITIES FOR:

my=my=m; m # My 55 = 54 = 5;.%°

265

1 — (sV/0)¢" dr ot pd’ | N, .
FA8A4;A1A2 G A (M"s"v"f‘z

/

2 — (<1237 4> B ' | A7
F Aghgidd, SRl A (M"s"a;"l"z

+ maaM_p-a i,
or

+ 1M ;-0 -a

= msaMpa0,
or

- nﬂle"s"A;"\l‘)‘z

Values of the
exponents
C' d’ ;y’ &
Spin and
parity configurations
= - _ . _
dot A+ reven 71 2s,) ", (2s)* -1 m, — 1
7= —1 (2sf)‘ m (2sf)+ -1 mi — 1
= + — _ _
ot Atrodd 77Tl @) 1 m, (2s) mt, - 1
7 = —1 (ZS',)+ —1 m, (2st)‘ mi — 1

“a, b, « and B are defined as in the general case (see Table IV).

*p = §(s — 4m2,
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TABLE IX

AMPLITUDES FREE OF KINEMATICAL SINGULARITIES FOR

mo=m=m m=m=m,ms=nm; s =5 =Sin; §3 = § = 5.

NaaM. ~Ag=Agid Ay
1 — (/28 Lbpt | M
Fz\az\‘:llhz (6172 k'p* | My apa, + OF "
MM i-2,-2,
MM 32 iaa,
2 = (s kBpS | ML s oy —
F:\3/\4:/\1A2 (s*) kfp M"s’\d"\l"a or "
Mg -1-2

Value of the
exponents
b d 3
Spin and parity “ * B
configurations
Z), even 7= +1 Y M » 0 m:_z -1 m;" ~1
7= —1 —1 mf, —1 m, -1 m, mi —1
), 0dd 7= +1 —1 n, m, —1 mi, — 1 mi ~ 1
— + - — —_
7= —1 0 m}, 1 m, 0 m;, m;" 1

ok = }(s — 4m®,  p = ¥(s — 4m’*}'/%; 5 = +1 for BB — BB, FF - FF and FF —FF;

n = —1 for BB — FF and FF — BB.

TABLE X

AMPLITUDE FREE OF KINEMATICAL SINGULARITIES FOR

m=m=m=m=mn=+l; =8 =s5=5==-5

ZA; even; ZA; odd:
PMypon, (P*[s'® Mapan,

p = (s — 4m*)?

n=28—Max(|Al,|p)
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1. CROSSING MATRIX FOR HELICITY AMPLITUDES

Let M3 2,205, £, w) and M{J), ., , (s, ¢, u) be, respectively, the helicity amplitudes
for the two reactions:

1 + 2 — 3 -+ 4 with momenta p, , helicities A;

and

4 + 2 — 3 -+ T with momenta ¢ , helicities A; ,

as defined in Eq. (II-5) from the corresponding spinor amplitudes
M 4)ay:a,4,(PsPa 5 P1py) and M jii)Al;A,‘Ag(qiSql; q49z)- For suitable analytic properties
of the spinor amplitudes, these helicity amplitudes are initially defined as analytic
functions of s, £, u in complex neighborhoods S* and T+ of the corresponding
physical regions. The index + means that the s (resp. ¢) physical region (s and
t real), are reached within S* (resp. 7+) from the upper half s (resp. ¢) plane.
The purpose of this section is:

(1) to analytically continue M® from T+ to S+,

(2) to find the relation between M9 and the analytic continuation of M,
(crossing matrix).

1. CROSSING PROPERTIES OF THE SPINOR AMPLITUDES

The crossing properties of the spinor amplitudes on the mass shell have been
proved by Bros, Epstein, and Glaser (5) in the framework of quantum field
theory (L.S.Z. formulation). Their proof holds for four particles with arbitrary
nonvanishing masses, whenever there exists a strictly positive minimum mass
for all states different from the vacuum. We shall first briefly recall their results:

(@ ‘/ﬂiis;A‘:AlAg(pi’.pél ; ppe) and '/’{&2,44 4,434 ¢:92)° being boundary
values of the same function ) 4,;4,4,(ksk, ; k:1k,) with initial analyticity domain 4
in complex k; space, k; + k, = k3 + k, , the holomorphy envelope of 4 always
contains a connected open set of the mass shell manifold (k2 = m,?) which connects
the physical regions of the two reactions. In other words, MY 4yi4ea, (901 5 9ad2)
can be continued from the physical region of the ¢ reaction to a point g, = — p,,

g2 = Ps> 93 = P3, @ = —py, Where {p,, p,, ps, ps} belongs to the s-physical
region, and g,2 = m;? all along the continuation path.

§ Note the order of the indices and the momenta in spinor amplitudes. It refers to the order
in which fields are written down in the definition of spinor amplitudes as Fourier transforms of
vacuum expectation values of time-ordered products.

595/46/2-5
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Furthermore, one knows that for any set {4,} of spinor indices,
‘/”(s) ( . ) = _)O(P) MO — ;- 1i-1
Agdg; 414\ P3Py 5 Py Py ( A,,Al;A,,Az(Pg Py P4P2) ( )

where o(P) = 1if 1 and 4 are fermions, and ¢(P) = 0 in all other cases.

(b) A continuation path can be explicitly defined by its image in the space
of invariants {s,t,u;s + t + u = X, m?: one first connects the region T+
to the region U~ (u-physical region reached from below) by a domain
2.5(s) : {5, <0,Imz >0; | t]| > R(s); | § — 5, | < e(sy,?)}, and then U~ to S+
by () :{ <0,Ims>0; |s|>R(); |t—t,| <e(t,s)}. Finally, one
chooses a path C in the union of

T+, Q,%(sy), U, Qt_(tl), S+,

Any path I' in {q;} space, ¢2 = m;?, the image of which is C can then
be taken to analytically continue £ from a t-physical point {g;} to a point
{—Dpa, P2, Ps, — P1}; {p:} in the s-physical region.

2. ANALYTIC CONTINUATION OF THE HELICITY AMPLITUDES

We know from Section II that the helicity amplitudes M{‘g(s, t, u) are analytic
functions of s, ¢, and u, (s -t + u = 3; m?), in the image of the analyticity
domain of the spinor amplitude (¢, deprived from the sets D(s, ) =0,
Ty =0, T = 0. T and T, are defined in the r-channel as ¥, and ¥, are
in the s-channel and correspond to the threshold and pseudo-threshold singularities
in the f-channel.

M§)(s, 1, u) is formally defined [Eq. (II-5)] by

MG, t,w) = AL AN, (I11-2)

where 2(Lg,) involves the four helicity Lorentz transformations corresponding
to the z-channel.’

In order to continue MY from T+ to S+, we have to show that the analyticity
domain of #® which connects the two physical regions contains an analyticity
domain for Z(Lgy,).

7 When we analytically continue outside the physical region, the helicity frame becomes complex,
so that the full Lorentz transformation from the standard frame to the helicity frame is no longer
determined (Sec. I1-1-A) by (L(p), Lt(p)), but by some pair of 2 X 2 matrices (L, L’), L’ = L%(p*).
We shall be interested only in the matrix L and its analytic continuation, which we shall still call
a Lorentz transformation, although it is only part of it.



KINEMATICAL PROPERTIES OF HELICITY AMPLITUDES 269

For the sake of definiteness, let us consider what happens for particle 1. In the
t-physical region, the part of 2(Ls,) relative to this particle is the matrix D®(Lg, (1)),
where Lj (1) is the helicity Lorentz transformation:

I3

t g1/my
Lgy(1) (i} = W, i
fly (1)
where W, is defined by:
W, — — 2€,0094'92°95°
o [D(s, 1, w)}2
m®Py; — (g, * P.
(1) = —2 7 Ta mf;}n a) G

Po=Pup=Pi=qg+qG=q+q.

All these definitions are r-channel analogus of Eq. (II-4).

The Lorentz transformation Lg (1) is singular wherever the basis vectors of
the helicity frame associated with particle 1 are. It is singular for @ = 0 (cf. the
denominator of W) and 5 = 0 [cf. the denominator of hy(1)]. Then, Lg(1) can
be analytically continued along any path which avoids these singular points,
and the result of this continuation is the same (up to a sign, as it will be seen below)
for all paths which lead to the same determination of 73, and @'/2,

Of course the same argument holds for the other particles. For bosons, a sign
ambiguity is of no consequence since the matrix elements of D%(Lg(i)) are
homogeneous functions of degree 2s;, of the matrix elements of L4(i). For
fermions, D*(Lg(i)) may depend on the path followed in g; space, just as Lg(i)
does. Ly, (i) can be written as o - Q(i)/[Q%(i)]/2 where the object Q(i) has components
which have singularities of the type ®/2 and J5, or J, ; Ly (i) has one additional
possible singularity, which is not a singularity of the basis vectors of the helicity
frames, namely Q%i) = 0, which leads to the above mentioned sign ambiguity.
This last equation is a relation between the com ponents of the g;’s which cannot
be expressed as a condition on the invariants. As a consequence, 2 paths I'; and I,
in g, space, on the mass-shell, which have the same image C in the invariant space
but which lead to opposite values of [Q%{)]'/? are not equivalent for D*(Lg,(i)).
However, we shall prove the following.

LemMMA. The analytic continuation along a path I' of the temsor product
Lgy(i) ® Lgy(j) only depends on the image C of I', and not on I itself.

Consequence. Since there are always an even number of fermions involved
in a reaction, different paths I" with the same image C lead to the same deter-
mination of [I® D*(Lg(i)).
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Proof of the lemma. We write, as in Eq. (II-4),

. P £ 0 !
L) = B (<5 — —2) Qn(ny(P) — g@)IPd <, (I11-3)
where
q() = q4 for i=4or2 and q(i) = qy for i=3orl
€ =1 for i=4o0r3 and € = —io, for i=2orl.

We consider X;; = Ly (i) ® Ly (),

(a) X is bilinear in [P,] so that the sign ambiguity of [P,] is irrelevant;

Py a4y _ mit*® + o - q,6 - P,
®) B ( 12 m; )  22mtPmg R - g, - PP

The singularities of B in g-space can be expressed through functions of the
invariants only, so that B is the same for different I™s which have the same
image C.

(c) We can always choose for [P,] a Lorentz transformation which takes
fi, onto W, , so that £, is a Lorentz transformation, in the 2-plane orthogonal
to P, and W,, which takes n,(P;) onto g(i). Then £,,(j) == KQ,(i), where K
represents a pure Lorentz transformation which takes g(i) onto ¢(j) (K = +1
if i and j belong to the same 2-body state). The singularities of K are again
expressed through invariant functions of the g;’s, and X;; is linear in K and bilinear
in £24,(?) so that the sign ambiguity due to £24(7) is also irrelevant.

Conclusion. Taking in the definition of the analyticity domain of Bros,
Epstein, and Glaser (5) (see Section III-1), large enough values of R(s;) and R(¢;)
in such a way that any path C also avoids all kinematical singularities, any path I"
in g;-space with image C is in the analyticity domain of the matrix @(Lm){;‘}}
of Eq. (II1-2). An explicit choice for C will be exhibited in Section III-3-A.

3. CROSSING MATRIX FOR HELICITY AMPLITUDES

Labeling with the index ¢ the “crossed” quantities, that is to say quantities
which have been continued from the #-physical region to the s-physical region
along a path I', we formally have

(¢, ()¢
M3 (s, t,u) = DLty M 0(q).
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The crossing property (III-1) of the spinor amplitudes then leads to the following
crossing relation:

3 o — )¢
M, tu) = (=) Z DV (L)) (L)) ME(s, t,u). (114

More explicitly, the matrices 2(L,,) and 2(L,,) are, from Eq. (II-5),

DL = (—ywHiateth DLy ()%, D™(Lyy(2));2 DLy (D)%, DMLy, (4))7

@( ){{S} — ( )94+/\4+83+/\s Dsl(L (1)):1 Dsz(le(z));: Dss(L12(3))fza Dsd(L12(4))f;4-

The crossing matrix in Eq. (III-4) is then
Z{A} _ ( )a(P) (_)Aa—z\,',+s4+z\4~—sl—)a; Dsl(L—lc(l) Lm(l))—/\l

X DL (2) Ly DL (3) L)) DL (@) L@)5, . (I11-5)

The explicit calculation of Z therefore reduces to that of the tensor product
®
[[ D™ (L32G) Ly, (0)).

We now show that L31°(7) L,,(i) can be determined, up to a sign, by considering
the basis vectors of the associated helicity frames. We shall then write the crossing
matrix Z, the overall sign being determined directly in Appendix A-II.

A. Determination of L3¥(i) Lyo(i), up to a Sign

To complete the definition of helicity amplitudes outside their respective physical
regions, we define 7, 9, , %, S as analytic functions of s and ¢ in the
following cut planes:

— the t-plane is cut from

Min((my — my)2, (my — m,)?)
to
Max((ms -+ m1)2, (m4 + mz)z)

and 9, and J, are positive for large real ¢;
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— the s-plane is cut from

Min((m, — my)?, (mg — m,)?)
to
Max((m; + my)?, (mg + my)?)

and ¥, and ¥, are positive for large real s.

— The P-plane is cut along the positive real axis and $*/2 is taken with a positive
determination in the physical regions.

— Finally, in order to get the usual determination of the scattering angle,
0 <0 < m we are led to define s/2 (resp. r'/%, #'/?) with a cut along the
positive real axis and a positive determination in S* (resp. T*, U?). Then
sin 0, = 251212/ S0 %, is =0 in S+, as well as sin 6, and sin 6, in T+ and U+,
respectively.

For the sake of definiteness, we shall consider the planes of the variables s, ¢, u,
and @ with the cuts and determinations of the kinematical functions which have
just been defined. Let us exhibit a path C in the Bros-Epstein-Glaser domain
which allows the analytic continuation of the helicity amplitudes.

Let p be a large real parameter. We start from M,:t=4p, s = —2p,
uw=Yy;m?—2pin T+

We have a first arc:

t = p(l + 3e%), §= —2p

u=>3y m?+ p(l — 3e¥), 0<p<m

ending in M, :t= —2p, s = —2p, u=Y;m?+4p in U~ and a second arc
t = —2p,
s = p(1 — 3e7), O0<p<m,
w=Y me+ p(l + 3e),
i
ending in My:t = —2p, s =4p, u=Y;m?— 2p in S*. P is a third-degree
polynomial in s, ¢, u, which for large p may be approximated by
D ~ 2p%(9e?® — 1), 0 < ¢ < 7 on the first arc,
@D ~ 2p%9e 2% — 1), 0 < ¢ < 7 on the second arc,

so that @1/2 goes back to a positive value in S+ as it should. Also, since we have
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never crossed the real s or ¢ axis, &; and J;; have not left the cut planes where
they have been defined.
The image of C in the s, ¢, u, and @ complex planes are shown in Figs. 5(a)~(d).

® O

.\\

| [ |
M, M, O M, M, M, [0 M,

FiaG. §.

All functions being now well defined all along the continuation path, we turn
to the analytic continuations of the z-helicity frames. In S+, these continuations are

Basis-vector 0. p,/m;ifi=2,3; —p;/m;if i = 4,1.
Basis-vector 2. — W, for i = 1,2, 3,4 because we have verified that we
ended with a positive determination of ®t/2, and furthermore,
(epwpoqtlqupqﬁ)a ¢ = _E;wpaplupzppl-)o'
Basis-vector 3.

€ mP(ps — P — (pi ~(ps — PY)) P
hy(f) = —2 1 mT() : s

where T'(i) is the analytic continuation of F for i == 1,3 and J;, for i = 4, 2.
This defines, up to a sign, the analytic continuation of Lg(7). Finally, we recall
that

¢ Dpifm;
le(i) ’q’z = W,
Tig hyo(7)
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(@) i = 4 or 1 (crossed particles)

Let us consider the Lorentz transformation Z(i) = L, (i) Ly,({). From the
preceding study, we have

¢ —i
2 2
iy ng(i)

ny(i) [resp. ny(i)] is the 3-axis [resp. 1-axis] of the transformed frame. Note that
the time axis, (and the 2-axis), of the standard frame are reversed, so that one
needs a pair of unimodular matrices to specify £(i). Let .£#'(i) be the 2 X 2 matrix
which accompanies -#(i) in the definition of the complex Lorentz transformation
(£@), 2'0)*2

It is easily seen that (£(i), —%'(i)) transforms the standard frame according to

i i
(@0, ~20) | = 7O
g —ns(i)

It follows that this is a rotation around the second axis, which turns out to be
real, so that

23 = —[Z'()] = R(@) = +(cos by, — io, sin 3x)) = ;. (1lI-62)
The rotation angle y; will be calculated in the following.

(b) i = 2,3 (uncrossed particles)

i i
20) Z: _ 72(12 : hence ()¢ = [£()] in this case.
#is ny(i)

(i) is again a rotation, and it reverses the second axis. We write:
Z(i) = Ry(m) R(),
$ 2(7) is not the Hermitian conjugate 2()". In fact, £’() = L{,() [LIT'®O) and it is quite

possible that [L;2]e # [L31°())', because the analytic continuation of L} (i) along the path C
is the Hermitian conjugate of that of L% (i) along the path C*, complex conjugate to C.
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where Ry(7) is a rotation through an angle # around the 3-axis and where R(/) is a
real rotation through an angle y; around the second axis,

f {
. ﬁl _ -”n],_(l)
KONl =
7ig na(i)
We write
L(i) = ioy(cos 3yi — ioysin fyi) = Foy (111-6b)

B. Determination of the Rotation Angles x.: The Crossing Matrix.
We calculate y; , —7 < x; << 7, by
cos x; = —z * (R(@) Aig)
sin x; = —#y * (R(i) i) = 7y - (R() #y),
since y; is the angle through which n, has been rotated around the 2-axis.

Calculation of cos y;
COS x; = €ty * (Letllc(i) L5(0) 7i5),

with ¢, = +1 fori = 1,4 and ¢, = —1 for i = 2, 3, according to the definition
of R(i).
By definition of #,,(7) and hy(7),

Lyy(i) 3 = hy(d), Lgl(i) fiy = hgl(i);
then

cos x; = Eihgl(i) o),

hlg(i) = 2 mi2P12 _ (pt ' P12)pi

mS(i) ’
2 — —_— .. p— .
Ry = —2 P = Py m.%) (Ps —P) P
N (T2 for i=1,2 ~_ {Tn for i=3,1
@) = (954) for i=34 ) = (9’;2) for i=4,2,
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which yields
FeTm cos xi = (8 + m® — m(t + my® — my?) + 2my°4,
F90T 32 €08 x5 = (s + m2 — m(t + my?2 — m?) — 2my24,
FsTa1 €08 x5 = (s + mz2 — m2)(t + mg® — my?) — 2m324,
FuaT a0 €08 yi = (5 + m2 — m)(t + m? — my?) + 2m?4,
with

4 = m? + mg* — m?® — m2

Calculation of sin y;
Similarly,

-1
e sin x; = m(Lgy (i) Lio(i) ig);
ie.,

sin y; = (i) hya(i).

hyo(i) has already been defined, n,%(i) is the analytic continuation of the first
basis-vector of the helicity frame of particle i in the f-channel. One gets

nlu(i) = €I,A.meWt‘yhgl(i)(qiﬂr/rni)'

For instance, for i = 1, one has nl“(l) = —(2/T4) €uprW9s°0:,°, Whose analytic
continuation is ‘
"f,,(l) = —(2/T31) €paWsPs'P1’

Repeating this argument for i = 2, 3, 4 yields

sin x; = — 2;1,1?/2 , siny;= 2;3§1-/2 ) ’
12«31 343
inygy = _ 2P ,_ B
) 271 3T

These angles x; determine the crossing matrix, up to an overall sign 7',
independent from the helicities. Taking into account the rotations through =
around the 3-axis which occur for i = 2, 3, the crossing matrix (III-5) now reads

Mi:}ﬁ/\ﬂz(s’ t, u) — n(s) (__)o(l') e—ivr(/\?_—/\s) Z (_)/\,,—AQ+54+A4—31—A1 dsl(xi);;\’l
A,

i

X (=X A x5 S, M s, ). (TET)
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We finally clean out this equation by redefining angles y; in order to write
the crossing matrix as [I® d"(xi)j;ﬁ;' , using identities such as:

& £ = (™ dCOT
and
AR = (T = TR
Furthermore, we show in Appendix A-II that #'¢ = (—)%s+2% 50 that we get
the final result, which is given in Table XI, and tested in Appendix A-V on the
case of #N elastic scattering.

4. CROSSING MATRIX FOR THE REGULARIZED HELICITY AMPLITUDES
In the crossing matrix of Table XI, we can express M‘® and M as functions
of the RH.A # and #Y, which have been defined in Section II. The crossing

TABLE XI*
THE CROSSING MATRIX FOR HELICITY AMPLITUDES

(8) fouw) = (—)F(Pr2sy+2sy gim(A —Ag) 5y, Al s 4\;
M b0 = () ety ;d ()i sy e
i

! ’ (#)
X d‘s(xx)f“: d"(x4)2: M AL (s, t, w)

o(P) = 1if 1 and 4 are fermions and 0 in all other cases;

cos (s + m® — md({ + m?® — mg?) + 2m2 4 sin 2m, Vo
X1 = — X = ——
! FaT AT A
cos s + m? — m?)(t + my® — m?) — 2m,® 4 sin 2m, Vo
x = x = —————
? ST A
cos v o @ st — mA + me — my?) — 2m? 4 . 2m Vo
X = TR e —
: ST X FuT
(5 + md — mA(t + m? — m?) + 2m2 4 . 2m, Vo
COS x4 = — siny, = — ———
'9’34'7;2 '95’:4-7;2

4 = m? + mg® — m? — m?

*8v1s We thank Dr. Trueman for a clarifying correspondence, according to which formula
of Table X1 of this paper can be put into coincidence with formula (43) of Ref. (6) by taking
into account the particle “2” convention together with a reversal of the normal to the reaction
plane in the ¢ channel. Our choice of conventions is the same for all reactions once the order
of particles is fixed.
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relation then becomes

‘g"(s) — X{A'}f(t)

) w7y (111-8)

where the crossing matrix X enjo,ys the following properties:

(1) X is uniform since % and F ¥ do not have any kinematical singularity
(except at s = 0 and/or ¢+ = 0 if channels s and/or ¢ correspond to BF states).
This is checked in Appendix A-III.

(2) X is furthermore a rational function of s and ¢ since it is uniform and
can be expressed in terms of algebraic functions. We write X3} = P/Q, where
P and Q are polynomials.

(3) Since F) is kinematically finite, zeros of Q have to be cancelled out
by zeros of some combinations of the functions # 3, . The study of this problem
is the purpose of the following section.

IV. KINEMATICAL CONSTRAINTS

1. PRINCIPLE OF THE METHOD

The aim of this section is to generalize to the case of arbitrary spins and masses
certain relations which must hold between R.H.A.at some values of the energy
variable as it has been already remarked in wN — #N (I6), mm — NN (16),
and NN — NN (I7) reactions and which we call kinematical constraints.

We recall an example (77 — NN scattering) of how such relations are derived.
If one expresses the invariant amplitudes 4 and B (see appendix A-V) as functions
of the R.H.A. F}, and FZ_, one finds

m my(t —u
A=lp, ¢ 20 Wp ],

2
B = —2myF2_, (v-1)

which exhibits a purely kinematical pole for 4 at p*> = 0, i.e., s = 4m,?, unless
the linear combination of R.H.A., which is the residue of this pole, vanishes. The
kinematical constraint states that

mN(t _ u) F2
—

_(s,t) must vanish at s == 4my? as s — 4my°
2 N

F. -:il-+(s’ t ) -+
If one does not want to make any assumption on the behavior of 4 at s = 4m,?,
one can say that the above linear combination of R.H.A.can be divided by s—4m?
without loosing its analyticity properties. Similar results are obtained in «N
and NN elastic scatterings by applying the same method, i.e., expressing invariant
amplitudes in terms of R.H.A.
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It is hopeless to try and generalize such a method for the case of arbitrary
spins and masses since we do not know, up to now, how to invert expansions
of the type (I1-9) or (1I-10), that is to say, to express the Joos invariant amplitudes
a,,(s,t) in terms of helicity amplitudes. Furthermore, there is no simple way
known at the moment to express parity conservation in terms of the set of a, ,,(s, 7).
The method which we propose is based on the analyticity properties of the crossing
matrix elements. In fact, we concluded Section III by noting that the crossing
matrix elements between R.H.A. are meromorphic functions. Our method consists
in looking for and canceling their poles. We find that crossing matrix elements
giving t-channel R.H.A. in terms of s-channel R.H.A. behave near %, = 0
and %, = 0 as

— (25,428 —~(285+28)F
L P and ST

Apart from these poles the crossing-matrix elements have poles at s = 0 (branch
point if the s-channel is a BF — BF one). This does not give more information
than is contained in Eq. (II-23) and (II-24), which express that the helicity
amplitudes themselves are kinematically regular at s = 0. On the other hand,
we verify that, despite the presence of sin(6,/2)'4#! cos(8,/2)*+#! in their denomi-
nators, all the crossing-matrix elements are finite at D(s, ) = 0, except in the
case my; = m,, my = m, where i, = hyy, = 52 and D(s, t) simultaneously
vanish at s = 0 (see Appendix A-IV).

Since the R.H.A. in the #-channel have no kinematical singularity at %, =0
and &3,=0, one could be tempted to say that the vanishing of the s-channel R.H.A.
at &, = 0 and &, = 0 provides a generalization of the kinematical constraints.
However such a statement does not take into account the fact that, for instance,
the determinant of d(y) is unity and thus has no pole even though all the matrix
elements may have one. Such an argument would imply, in 7 — NN scattering
for instance, that both ¥}, and F?_ have to vanish at s = 4m,? as s — 4m,?,
which is wrong.

These difficulties can obviously be avoided if it is possible to diagonalize the
crossing matrix for R.H.A. or at least the crossing matrix for helicity amplitudes.
Now this has been done by Kotanski (9), who remarked that, since the reaction
plane is the same for both channels, one can define amplitudes for which the
crossing matrix is “diagonal” (in fact, the crossing matrix has only one nonzero
element in each row and column) by choosing the spin quantization axis along
the normal to this plane, that is to say along w. Such amplitudes have been called
by Kotanski “transversity amplitudes”. Our method to derive the kinematical
constraints then consists in writing the crossing matrix for transversity amplitudes
and looking for the singularities of its elements.
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2. KINEMATICAL CONSTRAINTS IN THE GENERAL-MASS CASE

A. Transversity Amplitudes

We briefly recall here the properties of transversity amplitudes. We call
transversity of particle i the eigenvalue of the operator

—(1/m;) w,WH(p,)

W, 2€uwpo PPy’

* [D(s, OF~2°

where again

and W(p,) is the polarization four-vector of particle i. Whereas, for particle i
the helicity frame is defined by

Di» m(p:), na(p)) = w, ny(p;) = hyo(i),

a “transversity frame” can be defined by

Di» m(p), met(ps) = —hy(i), n"(ps) = w.

So, transversity states are related to helicity states by
l P, Lt(pi)’ 8is Ti> = Ds‘(R):f ‘ Pi> Lh(pi): Sis At>

Here R is a rotation through —3}7 around the first axis, i.e., specified by Euler
angles 4, 4w, —}=, and the subscripts ¢ and h refer respectively to transversity
and helicity frames. In Reference (9), Kotariski, has given the properties of D*(R).
We recall here the most useful one, namely, that it diagonalizes the matrices d*(x):

[D*(R) d*(x) DAR®)); = eid
or

[D(R*) d*(x) DXR)], = e~d 2. (Iv-2)
Transversity amplitudes are related to helicity amplitudes through:

— 8 A s A S %3A S, *\Agq _
ity = D 1(R)TIID 2(R)32D %R )TZD (RTYIM Aeidgg" (1v-3)

Among all the properties of transversity amplitudes given by Kotariski we recall

(@) Parity-conservation condition. From Egs. (IV-3) and (II-6) (parity
conservation condition for helicity amplitudes) and from

(—)*+* DY(R)? = e""D’(R)—.;‘ , av-4)
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we deduce that

T

TYT4:TITY

— n(_l)’r*"’z—*s—n T

T3T4:7T1T2 ?

that is,
T,

T3T4ITITE

=0 if p(—)yrrrTeT = 1. 1v-5)

(b) Crossing matrix. From Eqgs. (IV-2), (IV-3), and from the crossing
matrix for helicity amplitudes (Table XI), we derive the crossing matrix for
transversity amplitudes,

Tt

gy = (——)U(P) (__)31+32+33+34 e_i"(‘r2_""3)
T T4

Filrixy—raxa+raxs—Taxs) P
x e T7314;1112 ’

(IV-6)

where the y angles are defined by their cosines and sines in Table XI.

B. Relations between Transversity Amplitudes and R H.A.

We shall show that crossing relation (IV-5) implies a specific behaviour of the
transversity amplitudes which yields the kinematical constraints between
regularized helicity amplitudes. Before doing that, it is necessary to study how
the transversity amplitudes are related to R.H.A. near all the singularities.

(@) s = 0. The general study of Section II has shown that helicity amplitudes
are kinematically regular at s = 0. Since the transversity amplitudes are linear
combinations of helicity amplitudes with numerical coefficients, they do not have
a kinematical singularity at s = 0.

b) Fe = 0and & = 0. Applying Eq. (II-12)~(I-15) to Mz, » Which
appears in the expansion (IV-3), and using Eq. (IV-4), we find

+im(ry+rs) TS

Tf374;7172(ﬂ¢12) =€ 731’4;7172(¢12)

according as 03(—(]’12) = 03(‘?12) + 7
T-fsu:flrz(— ¢12) = eii"(ﬁ—m)em Tfs743711’2(¢'12)
according as 0,(—yp) = 8,(ya) £+ m;

ﬂ:iﬂr(‘rs+-r4) Ts

Tjﬂ‘r‘;717g(—¢s4) =€ 1374;1'172((}734)
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according as
0(—@31) = O @gs) + m; (EV-7)

and

TS
T3T4IT1T2

Fin(rg—r,
(“‘/’34) =e" fra=mdens T‘f374;1112(¢34)

according as

0s("¢34) = 93(‘!’34) + (Iv-7)

Furthermore, recalling Egs. (1I-19) and (II-20), which give the behavior of helicity
amplitudes near %3, = 0 and %, = 0, we see that

Tjww — St gt ij;w (Iv-8)
is kinematically finite at ¥, = 0 and %, = 0. Furthermore, the coefficients

of the expansion of T,au;,l,z in terms of R.H.A. are not all equal to zero at &,=0
and %, = 0.

(c) D(s,t) = 0. Replacing the M Mgiiph, appearing in Eq. (IV-3) by
sin(f,/2)1#1 cos(B,/2)1++ |

Agdgidy Ay
(where M, ;... is kinematically regular at (s, f) = 0) and using

DS(R);\ = gimm (—)*+ DS(R)L
and
DS(R*): — e—i7r‘r (_)s+/\ DS(R*)/\

we find:
TS

T8T4ITLTR

(_@1/2) — (_)31"32'*'34—'53 (___)'fl+'z—"a"1'4 Ts

—Tg—Tqi=~T1—Ty

(@Y% (1V-9)
if 0(—P1/2) = —O(P1/2) and
T:sn :"'1"'2(_ 451 /2) — (.__ )51-— 89—84+83 (_ )-rl+—rz—-ra—-r4 Ti ‘ra—n:—-rl--rz(@l /2), (IV~ 1 0)

if O (—DV2) = 27 — G(DU),

It would have been possible to guess such results qualitatively: since the

transversity four-vector w has a @'/ branch point, T, .. .(—P'/?) is related to
TS

2 rpmrgi—r—r(P*/®). On the contrary, the singularities at %, = 0 and %, = 0
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appear only in the second basis vector, —hy,(i), of the transversity frames. So,

it is not necessary to combine two or more transversity amplitudes to get amplitudes
which are kinematically uniform at %, = 0 and %, = 0.

C. Kinematical Constraints in the General Mass Case

Since Tf,a_,l;_,d_,2 is kinematically regular at %, =0, %, =0, and
s=0, T7 will have to cancel all singularities which may appear in
expli(rixs — Taxe + 7sXs — 7axa)] [Eq. AV-6)] at S, =0 and S =0.
We then say that, 7. .. has to behave near %, =0, %, =0 like

exp[—i(mix1 — Tox2 + Taxs — Taxa)], Which we rewrite as

Ty — Tg T+ T

exp (—i [(x1 tx) =5 T x5

Tg — T3

+ o+ %0 T+ G — x) 4.

We now study the behavior of exp[i(y, =+ x.)] (resp. expli(xs -+ xo)]) near %, = 0
(resp. S, = 0). Since near ¥, = 0 (resp. S5, = 0), cos(x; = x») and sin(y; + x,)
[resp. cos(xs &+ xs) and sin(y; + x,)] behave like [s — (m; F my)?]-! (resp.
[s — (m3g F m,)*]* [see Appendix A-III, Sec. I-1, and Eq. (A-III-1)], exp[i(x; + x2)]
(resp. expli(xs &+ x4])) will have either a pole or a zero at s = (m; + m,)?
[resp. s = (mg 4= my)?]. (expli(x; + x;)] has a zero if exp[—i(x; + x;)] has a pole
and vice versa). From the expression of sin y; one can see that the behavior of
expli(x; + x2)] and expli(xs + x,)] depends on the determination of [D(s, t)]1/2.
We will show below that, in order to write explicitly the kinematical constraints,
it is sufficient to know the correlations between the behaviors of expli(x; + x2)1,
expli(xs + x4)], and for instance that of . This can be done directly using
relations given in Eq. (A-III-1). Results are given in Table XII.

TABLE XII

near s = (m, + m)?: &% =~ gl w5 X1 X2) ~ pE?

1 2 12 12
near s = (m, — m)?: e o2 il < oI o ey
near s = (m, + m)* : e =~ Pl <> e~ Xy Xy o it

— — 2 - Hi0 ~0 1 —i(Xgt+Xq) +2€,
near s = (m, m)? 1 €% = ikl <> e iXgtAy = i

Where ¢;; = ———
[ my — m;|

595/46/2-6
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Table XII allows us to write the kinematical constraints in terms of the
amplitudes T defined in Eq. (IV-8):

T T‘ T 1'2
N ear P13 = 0
3 sy 83 (ry+79) : 0, +1
7374172 = P12 if % o~ P1a
Near l)&lg =0
5 81+82ﬂ:€13(ﬂ'1—72) : 16 +
T3T4TITe = l’bm if &% ~ t/lm
N ear Pag = 0
s g8 (rg+7y) : 0 +1
T37T4:T1Te = Py if o™~ Paa
Near i34, =0
s 8g+84egq (Tg-ry) : 6 +1 a
T"a"’:::'u"’z = ¢34 if e~ ¢34 * (].V 11)

In order to make the meaning of Eq.(IV-11) clear, we add the following
important remarks.

(a) In terms of regularized helicity amplitudes, Eq. (IV-11) are actually
constraints: this means that near s = S;, ($; = (m; + my)?, S = (my — my)?,
= (m3 + my)?, S, = (my — m,)?), some linear combinations of R.H.A., with
coeflicients which do not vanish at s = §;, must behave near s = §; like
[(s — S:)'/2}¥s, where N, is a' nonnegative integer.

(b) Since ez =~ (s — S)E/4 if O [—(s — S)17?] = O[(s — S)'2] + =, we
see that Eq. (IV-11) which make use of crossing are compatible with Eq. (IV-7)
which only use regularization of helicity amplitudes. This, by the way, provides
a consistency check on the evaluation of the crossing angles y;. Further-
more, this proves that, if N; is odd, then Tfs,‘ arl(s — S)H/?] is kinematically
uniform at s = S;.

(c) If one changes the determination of @1/2:
(i) the behavior of e*®s changes into its inverse at s = S; ;
Gy T changes into 7, .. ., up to a phase as shown in

737417y

Eqgs. (IV-9) and (IV-10). So, Eq. (IV-11) with either the plus or the minus sign
corresponds to the same set of kinematical constraints for R.H.A.
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(d) — For practical applications, Eq. (IV-11) can be understood in the
following way:

aor i . § = Si
—a;,; (T'ran:frrz(ss t)) - 0 for gt'Splz‘S’éM cOS 93 — 5;12'?34 Sin 03
with p=0,1,., (i\’_z; - 1), i=1,..,4 (IV-12)

Sy = (my + mp)? Sy = (my — my)%;, Sz = (my + m?; Sy = (my — my);
Ny =5+ 8+ 7+ 72, Ny = 51 + 85 + €91 — T2),
Ny =83+ 84+ 73+ 745 Ny = 53+ 54 + €34(73 — 70

N = N; if N, is even,
¢ N, —1 if N, is odd,
€ = T T M
Y imy—my

T: . .
3 8747172

T:a'r‘:'rl'r,(s, t)

I — SN

T,a,‘;,l,z being expressed in terms of R.H.A. through (IV-8), (IV-3) and Table IV.

Quite equivalently, constraints read:

0% i . { s =5
b_S; (T'ra-r.:‘rln(s’ t)) =0 for “‘;,izyu cos 03 — “‘%25’;4 sin 08
with p=0,1,., (-1!2; — 1); i=1,.,4; (1V-13)

Ni=8+8— 17— 1, N; = 51 + 82 — €3(r1 — 72),

Ny=383+8,— 13— 74, Ni = 853 4 54 — €373 — T4);
Tﬂ
Txri;TITS

Tran:‘rl"‘ﬁ(s’ t) = [(S - Si)llle;_N'.’— ‘

In this way the kinematical constraints appear as the vanishing of linear combina-
tions of the R.H.A. and their derivatives at s = S; with coefficients polynomial in ¢.
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3. KINEMATICAL CONSTRAINTS IN PARTICULAR MASs CASES

The general analysis applies in the case %, = S5, = &, €, = €3 . Eq. (IV-12)
becomes

% — § = S
éﬁs’7 (T"‘” 8 1)) = 0 for 313’2 cos 0, = SF2sin 6,
with p=0,1,.., (1‘{2_ 1) i=1,2, (1V-14)

8y = (my + my)?, Sy = (my — my)?,
NM=si+S+s+tsutntntrntn;
Ny =81 + 8y + 83+ 84 + €1a(my — 7o + 73 — 74);

T,
T prirgr 1) = ———2
87457172 [(s . Si)l/?]Ni‘Ni—

or equivalently Eq. (IV-13) becomes

I _ s = S,;
(T”’“ (&) =0 for giyz cos §, = —F2sin 0,4’

8s”

with ;;;0,1,...,(]\’2 1) i=1,2, (IV-15)

Ni=s+ S+t 85—7—To— 73— T4}
Ny =8+ 52+ 53+ 54 — €21y — T3 + 75 — 7p);
8
T” T"'s"‘4"1“'2

7374 "'1"2( t) = [(S _ S,-)I/Z]N;“N;’— '

New problems arise when i, and/or i, coincide with s*/2. A particular study
of this case is given in Appendix A-IV.

Finally we show in appendix A-V how all the kinematical constraints which
have been already observed in some particular cases can be derived in the
framework developped in the present section.

V. SUMMARY AND CONCLUSIONS

This study of the helicity amplitudes with respect to their analyticity properties
as functions of the invariants leads to the definition of new amplitudes which are
analytic in the image of the analyticity domain of the spinor amplitudes in the
space of the four-momenta, on the mass-shell. Our results hold for a large set
of mass cases, and whatever spins are involved, with the exception of a BF — BF
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reaction, when we are left with a square-root type singularity on the c.m. energy
variable squared, which is related to the so-called ‘“Mac Dowell reciprocity
relation.” We would like to emphasize that the two basic tools in the work are

(1) The analyticity of the Joos expansion for spinor amplitudes (2), (3)

(2) The existence of an analyticity domain for the spinor amplitudes, which
connects the various physical regions associated to a given two-body process
(crossing property) (5).

We have also made use of the interesting properties of the transversity
amplitudes (9), in connection with the question of kinematical constraints.
Our results are of three types.

(1) The helicity amplitudes can be made free of kinematical singularities.
More precisely, whether parity is conserved or not, the relevant number of
linearly independent new amplitudes %, can be defined, which are related to the
Joos functions @, [Eq. (II-27)] through polynomial coefficients in s, f, and u.°

(2) A crossing matrix is derived for the helicity amplitudes using an analytic
continuation path from one physical region to the other. For the regularized
helicity amplitudes &, the corresponding crossing matrix has elements of the
form P/Q where P and Q are polynomials in s, # and u*.

(3) By using the so-called transversity amplitudes, for which crossing yields
a relation between only one amplitude in the s-channel and an other one in the
t-channel, the problem raised by the existence of zeros in Q is more easily solved
than for the # functions. The solution is expressed by means of relations between
the & functions and some number of their derivatives with respect to the c.m.
squared energy, which hold at certain values of this variable, namely at thresholds
and pseudo-thresholds.

We think that such considerations on the analytic properties of helicity
amplitudes can lead to two kinds of applications:

(1) Forany phenomenological model which makes use of crossing properties,
especially for Regge type models, the & functions are good candidates to satisfy
a Mandelstam representation and to be approximated by Regge type functions.
Furthermore, taking into account the kinematical constraints yields some informa-
tion either about possible relations between the residues of a given Regge pole
or about the existence of families of poles, depending on the ideas one may have
about the question of “‘evasion or conspiracy” (1), (17). These properties, together

® When the considered channel corresponds to a BF state, one should replace the relevant
c.m. squared energy (s, ¢ or u) by its square root.

*#bi# When the considered channel corresponds to a BF state, one should replace the relevant
<.m. squared energy (s, ¢ or «) by its square root.
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with crossing relations, allow to write phenomenological formulae which are at
least “kinematically correct™.

A last remark concerning the kinematical constraints is that no constraint
can be found for vanishing c.m.-squared energy in the general mass case. The
relations which have been discovered by Gribov and Volkov (I7) in the reaction
NN —> NN at t =0 (¢ is the c.m.-squared energy), can be generalized to any spin,
but only in the equal mass case. The true generalization of these relations is given
by the kinematical constraints at pseudothresholds. The existence of these
constraints is then a very general property of any helicity amplitudes involving
high enough spins, thus although such relations can hold at zero c.m.-squared
energy in some mass cases, they seem to be of a nature very different from that
of constraints which are implied, inside the Regge pole model, between the
so-called ‘‘daughter” trajectories (I8). Indeed, in the NN — NN reaction, for
example, there is no need for daughter trajectories (equal mass case), whereas,
just because of the equality of the masses, a kinematical constraint exists at zero
c.m.-squared energy.

(2) Another application of the present study could be, on a more theoretical
ground, to allow the generalization to the caseof nonzero spins of the results
which have been obtained for the analyticity domain of the amplitude from
axiomatic field theory (19), in the spinless case. Here we must notice that the
enlargement of the analyticity domain which has been obtained makes use of a
positiveness property of the absorptive part, which is a consequence of unitarity.
However, the content of unitarity seems difficult to express so simply by some
positivity condition in the case where there are several two-body coupled channels,
which occurs for an elastic reaction between particles with nonzero spins (20).

Finally, it would be interesting to build out of the set of R.H.A. with the
corresponding kinematical constraints, new amplitudes with the same analyticity
properties, but free of any constraint. This would yield a new basis for an analytic
expansion of spinor amplitudes. Parity would be easy to express and amplitudes
would be labelled by meaningful indices, simply related to the individual spin
components.

APPENDIX A-I. KINEMATICAL SINGULARITIES IN PARTICULAR MAss CASES

We give here the details of the calculations corresponding to the particular
mass configurations shown in Table V.

We have not studied very pathological cases such as, for instance,
my 4 my = my -+ my , my — my 7 mg — m, . Furthermore, we assume that when
two particles have the same mass they are of the same species; in particular,
they have the same spin. We shall always assume that parity is conserved. In all



KINEMATICAL PROPERTIES OF HELICITY AMPLITUDES 289

cases, the study of the kinematical singularity at d(s, ) = 0 goes as in the general
case.

1. “ELASTIC SCATTERING™: my = my, my = my, m; 7= m,
We define new notations:

Fro=Ju =S = ([s — (my + mPlls — (my — myP])'2,
p =k = FJ2512,
w = wy = E, W, = w; = w,
cos By, =1 4+ 1/2p2
A new situation arises from the confluence of %}, =0 and %, =0to ¥ =0
(Table II-5). Expansions A and B are no longer suitable. Now p cos(8,/2), p sin(6,/2)

are regular at & = 0. So, we introduce a new frame, which we call RIII,

characterized by n,(R) = (q12 + ¢s)[— (g1 + ¢9s)?]72/%, which leads to the
Expansion C shown in Table XIII.

TABLE XIII

ExpriciT ForM C or Eq. (II-8) CorresPONDING TO FrAME RIII,
WHICH 1S CONVENIENT TO STUDY KINEMATICAL SINGULARITIES AT
& =0 WHEN my = mg AND my; = m,.

Frame R 111
P 1o + Gas
HR) = —, ny(R) = w, R) =
") s (B oK) [— (12 + 2P
Ep sin(6,/2) $psin(6,/2)(w — E)
————r Pt ————— i,
e(Apy, Apy) = ( —i - sin 0, eldp,, Aps) = Ep* sin 0,
0 4p cos(6,/2)(w + E)

AL(1) = R(—6,/2) B,
AL,(2) = R(—6,/2 + =) B,
AL, (3) = R,(0,/2) B,
ALyy(4) = R(0,/2 + ) B,

Expansion C
M) a itgag = 2o (— D750 DB YN D'(B))s D's(B) s

9.\ A 4 4 9, \A
DM(B‘)_I\Agdq (— ') 1d‘2 (_ __05_) : dca( 8, ) s du( ') 42
—%a 2 A 2 -A, 2 —A 2 A
1 2 3 4 (A-L1)
The dots stand for quantities kinematically regular at & = 0 (¥ = &, = Fy)
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1. Kinematical Singularities at & = 0

s = (my; 4+ my)® Using Expansion C [Eq. (A-I.1) of Table XIII] and turning
around s = (m; + m,)? along the path shown on Fig. 2, we find the following
changes:

30, — 30, + m,

p—=>0p

( w;i +m; —p )i“f%( w;i +m; —p )’F“i
R2myw; + m)]* Rmfw; + m)2 7

which lead to
MA3A4;A1A2(— Prz) = (‘)EAS"H& M—Aa—a4;—al—az(‘l’12) = ")MAsu:AlAz((Plz)
=Mn A3A4:A1A2(<P12),

since with our assumption on the species of equal mass particles, n = +1 if
my=my, my=m,. Thus, M MdatAg has no kinematical branch point at
§ = (my + my)2.

s = (m; — my)?. At pseudo-threshold we find
M/\s/\4;/\1/\2(——‘/j12) = 77(_)2‘\}#23x MA3A4;A1,\2(¢12) = MAgAg:A1A2(¢12)
since n = +1 and s; = s5. Thus & ity Das DO kinematical branch point at
s = (m; — m,)? either.

Kinematical poles. Since d*(+0,/2) is a homogeneous polynomial of degree
2s in sin(8,/4) and cos(8,/4) and since sin(f,/4) oc (¥)~1/2 and cos(8,/4) oc (F)112,
one has

M grp, € (y)—z[sﬁsz—Ma-x(],\],h‘])].

2. Kinematical Singularity at s = 0

In principle, no special study is needed at s = 0. However, we get a result slightly
different from that obtained in the general case: since it is not necessary to associate
two different helicity amplitudes in order to get an amplitude without kinematical
singularity at & = 0, it is possible to pick up the whole kinematical singularity
at s = 0 even in the BF — BF case. Recalling that

Y 1/2y—|A—ergegqul
MA3A4;A1A2 oc (s7) ! *
where now €65, = +1,

(S1/2)|A—y| y2(81+sz‘Max(|/\[-IFl) Ml\a/\gi/‘l/‘z (A-I.z)

has no kinematical singularity. (Results are given in Table VI).
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I my = my = m; mg 5 my; 5, = 53 = S

The general study applies to %, and ¢y, . ¥y, now coincides with s1/2.

1. Kinematical Branch Point at s = 0

s — dmA)e su
k:g___.zﬂ_)__’ W = W = Wy = 5,

2
cos B, oc s1/2,

We use expansion B [Eq. (II-10)] for which the third components of the semi-
bivectors are regular at s = 0. One turn around s = 0 induces the following
changes:

wg + b _’(wS + p)s
Wy + b _—(w4 :t p)a
(w — K)fm — —m/f(w — k),

—08 —> —1T + 08
From
d(—m 4 0)5 = () dN(=0)5 ,
d*(—m + Hs)fiz = (_)32—42 dsz(__gs);? ,
one gets

M,\,,A4;,\1A2(*Sl/2) = (“1)'\1“#“ 7)12M/\3A4:—/\1—A2(S1/2)'
Thus, with the notations defined in Eq. (1I-17):

o have no kinematical branch points at s = 0
for A, -2, - p even gksllzﬂu and s = dm?;

st204,  have no kinematical branch points at s = 0

for A +2 +p odd gk@m and s = 4m2.

2. Kinematical Pole at s = 0

Applying the general analysis, one finds that each term of Expansion B
[Eq. (II-10) of Table II] behaves like

(Sl/z)ezu(A1+As);
and since the sum over 4, and 4, runs from —si to +s1a the worst behavior

will be

( st /2)—2sm
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so that:
(s13)2m)” of,  and  (sVH)@w1ZB, for A\ +A;+p even
and
(V)®w*-1e4, and  (sV2)2m)" B,  for A +A+p odd (A-L3)

have no kinematical singularity at s = 0. (Results are given in Table VII).

L. my=my=m';myLmy; sy~ 85 = S5

This case is quite analogous to the preceding one. One finds easily that
y
(s22)28)7 oAy, and (s12)@s-1 7., for A3 -+A,+ A even
and

(stD)@ep*1 o7, and (s B, for A+ A+ A odd (A-L4)
have no kinematical singularity at s == 0. (Results are given in Table VIII).

IV. m=my=mymg=my=m;m=7=m';s; =28,=5m,5=258 =275

The general study applies to the thresholds, but now i, and ¢y, coincide
with st/2,

W = Wy = wy = w, = }s'/?)
= 3o — 4mPR  p = (s — 4m'Epn
cos 8, is regular at s = 0.

Expansions A, B and C are not suitable since the third components of the
semibivectors are singular at s = O in the corresponding frames. However, one
can see that in these three frames the second component of the semibivectors,
equal to +ipk sin 8, , is regular at s = 0. So, we define a new frame (frame RIV)
in which the third axis is the second axis of frames RI, RII and RIII, namely, w.
This leads to Expansion D shown in Table XIV.

1. Kinematical Branch Point at s = 0

One turn around s = 0 transforms

( w; ;{Pii ) into _ ( w; ;’;Pﬁ )_1‘
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TABLE XIV

ExpLicIT ForM D ofF EqQ. (II-8) CORRESPONDING TO FraME RIV,
WHICH 1s CONVENIENT TO STUDY THE KINEMATICAL SINGULARITY AT
s=0WHEN my =my, mg = m,.

Frame R IV
P Gzt g
HR) = EE n(R) = — m, n(R) = w
stz sz
T sin(d,/2)(k + p) vy sin(8,/2)(p — k)
-, s1/2 . s
e(dp,, Aps) = { — ——cos(8/2(p — k) e(Apy, Apy) = { — — sin(@,/2)(p + k)
4 4
i ] i .
- Epk sin 6, Epk sin 6,

AL(1) = Ry(m/2) R(—6,/2) B,
AL15(2) = Ri(n2) R(—06,/2 + 7) B,
ALy (3) = Ry(n/2) R(6,/2) By
AL15(4) = Ri(n/2) R(6,/2 + =) B,

R.(n[2) is a rotation through =/2 around the 1-axis

Ry == 17

7 1) (Euler angles —/2, 72, 7/2).
—1

Expansion D
Mypgagy = 2 (<0575t DB DBy DB} DB s

DA (_Z,Z’Z)Ald‘l (.— 0, )011)02 (_ Z’Z’E)Azd"z (_ 9, )Cn D's (_2’2’2)48
2°2°2), 2 )5, 22’2, 2 )., 22’7,

9. \C: A C,
' ( s ) ] D (_' z , - , 1_1') ‘d':l ( f, ) 4(S1/z)|M1!+|le - (A-1.4)
2 )., 2°2°2., '\ ),

M1+M2=A1+A2+A3+Ac
The dots stand for quantities kinematically regular at s = 0.

From
D(—m)2, #f2, w/2)& d°(B); = (—)* 4 e D¥(—m/2, =2, 7r/2)‘c‘ a'(0°,

we find, with Expansion D, M., (—s*®) = M_, _,; , _, (s"9(—), or
taking parity conservation (II-6) into account,

M‘ah:&y\g(_sllz) — 7}(___)2(/\,' M:\,z\4:/\1/\2(31/2)-
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2. Kinematical Pole at s = 0

Each term of the sum in Expansion D behaves like (s'/2)!M1l+IMsl and since
| M, | + | M, | = 0, there is no kinematical pole at s = 0.
To summarize:

if n = -1 (ie., BB — BB, FF — FF, FF — FF),
Mg, for Y A even,
i

(57173 MA3A4;A,,\, for ZAi odd,

andif % = —1 (i.e.,, BB — FF, FF — BB),
(s M0, for Z A; even,

Mgy, for YA odd (A15)
have no kinematical singularity at s = 0. (Results are given in Table IX).

V. mp=my=mg=my=m; 5 =8 =83 =258 =31n1=+1

Near s = 4m? we apply the study of case I and near s = O we apply the study
of case IV and find directly that ‘

pz(zs—Max(I/\l.lul)) MAsh:f\Mz for Z)“i even,
4

Migpging,

pRES—MAX(|A]:{u|)
172

for Y A odd (A-1.6)

have no kinematical singularity. (Results are given in Table X).

APPENDIX A-II.

DETERMINATION OF THE OVERALL SIGN 7' IN THE CROSSING MATRIX

The method we used in Section III-3 cannot yield the overall sign 5'® since
we only follow the helicity frames all along the continuation path instead of
the relevant 2 x 2 matrices. We first prove that 5‘® can only be a product of
(—)?s factors.

As shown in Section III-2, fermions can be associated by pairs so that the
tensor product of the corresponding 2 X 2 matrices Lg (i) can be unambiguously
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continued. This means that the relative sign only of LY ‘(i) Lyy(i) and LS ()Lya(j)
can be determined independently of the chosen continuation path I' in g,-space.
Let us define ¢, by:

L) = Ly (1) L) = epy

where o, has been defined in Eq. (III-6a); L5,(1) is the analytic continuation
of Ly(1) along a path I'. Now 2(i), (i = 2, 3, 4), as obtained through analytic
continuation along the same path, can be written as

L(i) = €€, where ¢ = +1.

r~i7i

This proves that 79 = eZisig2ne20¢,24 and, owing to the fact that Y; 2s; is
even, 7'? is independent of I" and furthermore it is a product of (—)2* factors.
In particular, »'® = 41 for a reaction involving four bosons.

Since (—)%2# = 1, the only possible values of 7' are

(_)231, (_)282, (_)233’ (__)284’ (_)2s1+2sz’ (_)281+233’ (_)231+234.

A first simplification is related to the involutary character of the crossing
operation. v
Substituting angles y;, as defined in Table XI, instead of angles y; involved
in Eq. (IT1-7) yields
M(s)

B () inOamid) T 55 A a g0
= =r"'n"e : Hdz(Xt),\: M{,\v} (A-IL1)

and permuting s and ¢ in the above relation, we get

. ® .
M{(:),} — (*)0(1’) 1’(!) een(az—ks) I‘[ dsi(xit))::j M{(:,),} . (A-II.Z)
Since the analytic continuation is made along the same path, the angles x, and y{*
can be compared at the same point. One finds that

x: = —x? for crossed particles,

xi = x  for uncrossed particles.

(A-11.3)

If one now inverts (A-II.1) and substitutes (A-IL3) into (A-II.2), comparing
the two expressions obtained for M}, yields

.’](3) — (_)282+283 n(t). (A_II4)
The four possibilities left for ¥ are then

(_)281’ (_)234’ (_)2314—232’ (__)281+2ss_
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As a consequence of our preceding discussion about the sign ambiguity, we can
choose a definite path I', and write for this path

€0 = Lg;l(i) ng(i) where €, = ﬂ:l’

79 = @it = (ae)™ (ae)™ (qe)™.

By inspection, we see that the determination of only two relative signs, €€ and e,¢, ,
say, allows us to discriminate between the four possibilities. Exhibiting explicitly
the matrix € = io, which occurs in the definition of the 2-body helicity states,
we define matrices 8; through

6oy = &b, €20, = €fye7t,

€505 = B, €0y = By

€65 and e,¢, are thus determined by a direct calculation of
Yoo = €605 € oy = Bs 131 s (A-ILS)

— -1 -1 -1 — Q-1
Vi = €4€2€ g € e = f3 :32 .

Taking p large enough in the definition of path C in Section III-3-A, we get a
continuation path which stays constantly far away from the singularities, the
precise location of which depends on the masses. Then %'® does not depend
on the mass case, so that it can be evaluated when masses are equal.

In this case, Eq. (A-11.5) reduces to

Y = —I€ €0, = ﬁ;lﬁl s

(A-11.6)
Yar = l€€40y = 34_152-
DIReCT CALCULATION OF y5, = B8,

Going back to the definition of Ly, (i) and L,,(i) as given by Eqs. (II1-3) and (II-4),
respectively, and setting there Ly (i) = Ly (i) €~ and Ly(i) = Ly,(i) €72, we get:

v = Li'(3) LE(3) L™ (1) Lix(D).

Particles 3 and 1 belong to the same (final) state in the s~channel. Then Eq. (III-3)
yields:

Lu®) L'y = B ( tllp/t2 — {Ini) B ( tIl)/t2 e Ln;)
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This matrix, with a positive trace (as can be seen by taking g, = q,), represents
a pure Lorentz transformation in the 2-plane ¢, , g3 , which takes ¢,/m onto g,/m.
Then

, — m? + 0q50§;
L;(3) lel(l) = 2mi(m?® + q:. qll)lllz ’

the analytic continuation of which is:

, —1° m? — opgap
L50) L) = e
Now Eq. (A-II-6) shows that y4, (and y,,) do not depend on the standard frame.
So, once the analytic continuation is performed, we can take as a new frame the
c.m. frame in the s-channel with 2-axis along w and 3-axis along g,,. Let 8, be the
scattering angle, and let E = s'/2/2; then

m+o-'p

BE T e L= M+ o P poy

L) = 2m(E + m)]/2
where R(6,) = cos(8,/2) — io, sin(8,/2). We then easily find

_ R'B)o p;s—o-p)
Ya1 = 72 .

Evaluating 4 Tr(ioyy,,) from (Eq. A-11.6), we find

ey — 225 0,/2 St‘l’}fs/ 2 With  2p = (s—dm2 >0

above the s-cut.
In the s physical region, ¢ is negative and £1/2 = i | ¢ |'/2, @, is positive, so that
sin(8,/2) = | ¢ |V/2/2 p. Thus:

€63 = +1.

DIRECT CALCULATION OF y,, = 7B,

The preceding calculation can be exactly reproduced, because 4 and 2 also
belong to the same (initial) state in the s-channel. One finds

_ RO No py— o py)
Yaz = 1172

in the s-channel c.m. frame above-defined, so that y, = —yg . Comparison
with Eq. (A-IL.6) yields

€€, = €65 .
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Looking at the possible values of 5‘', we conclude that

,,](s) _ (_)281+283 — (_)232+234.

APPENDIX A-III. CONSISTENCY BETWEEN CROSSING AND REGULARIZATION

We have defined kinematically regular helicity amplitudes & in both s- and
t-channels. A consistency.check of their being kinematically uniform at thresholds
and pseudo-thresholds can be performed by looking at the behavior of the
corresponding matrix at such points. As shown in section IV, the occurence
of poles in this matrix does not mean that regularization is wrong or that individual
amplitudes have to vanish, but yields the kinematical constraints. So, we shall
just make sure that crossing matrix between R.H.A is uniform at ¥, = 0, %3, = 0,
Tu = 0, T4, = 0. We first study the crossing angles x; at such points and then
the corresponding properties of the crossing matrix.

I. SINGULARITIES OF THE TRIGONOMETRIC FUNCTIONS OF THE CROSSING ANGLES

After turning around a threshold or a pseudo-threshold branch point of the s
(Resp. t) channel, we see that cos x;, siny;, cos 6, and sin 6, (Resp. cos 0,
and sin 8,) change sign, which means that the corresponding angles are increased
or decreased by 7. We first show that these alterations are not independent.

1. Angle Relations

A. Branch point at 15, = 0
Let us calculate sin(y, + €x,) where € = 41, using Table XI. We find

LT 2T g 5in(xy + €x2) = 2DV2s — (my + em,)?)[t(my — emy)
+ (mg? — m?) my — emy(m® — my?)].

Recalling that %%, = [s — (m;, + my)?][s — (my — my)?], we conclude:
(1) sin(x, + x.) does not have either a pole or a zero at 5 = (m; + mp)®

Then sin[(x; + x2)/2] and cos[(x; + x2)/2] have no branch point at ¢,, = 0, so
that, upon turning around ¢, = 0, x; — x; + €7 Whereas

Xz X2 — €7 (6 = £1).

(2) Similarly sin(y; — x») does not have either a pole or a zero at
s = (m; — m,)?, and, upon turning around ¢,, = 0, we see that x; and x, now
behave identically.



KINEMATICAL PROPERTIES OF HELICITY AMPLITUDES 299

To relate the behavior of 8, to that of the x’s, we conclude sin(8, - ex,),
e = +1. We find

& fzyéwﬂz sin(f, + €X2)

= 20L3(s172 + m; + emy)(s1/% — my + emy)(sVE(t — mE — m?Y)
+ emy(s — mg® + mg?)).

With the positive determination of s'/2 (above the cut), we conclude that

sin(f, — x,) does not have a pole behavior at ¢, = 0;
if my > m,, sin(f, + y,) does not have a pole behavior at ¢, = 0;
it m<m,, sin(8, — x,) does not have a pole behavior at i, = 0.

B. Branch pointsat Sy = 0, T4 = 0, T, =0

Similar methods are used. Symbols @, , ¥4 , Py, Y are defined in the ~channel,
a8 @q5 , Y2 » Paa > Py, are in the s-channel.

All results are summarized in the following table, which gives the correlated
behaviors of various angles when one turns around a given branch point.

¢z Uf O, — 0,4+ emr then y, =y —€m, Yo —> X2 -+ €7;
sy if 0,8, + em then x> x1 + €€7, Xo = Yo T €€127;

@y if 0,—0,+ em then y;—> y3— €m, xgs—> X1+ e7; (A-TIL1)
gy if 0, — 0, -+ emr then y3— x5 — €€347, Xa —> Xa — €€347.

g2 If 0, >0, + em then y,—>x,+em, xa—>xa+ em;

P if 0, — 0, 4 em then x,— X4 — €€, X2 = X2 - €€a; (A-IT1.2)

pn if 6, —0,+ em then x3—>yx3—em, x> x1— €7;
P if 0, — 0, + em then yx;— x3 + €€y, x; —> X1 — €eam.

We recall that ¢; = sign(m; — m;,),

€ = 1.

II. CONSISTENCY BETWEEN CROSSING AND REGULARIZATION

Although we have checked consistency for all types of reactions, we shall only,
for the sake of brevity, reproduce here one such check explicitly, namely, in the
case of four fermions, with relative intrinsic parity » = +1.

595/46/2-7
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Let Ffy (Resp. G}N}) be the R.H.A. in the s (Resp. ¢) channel, where i =1, 2.
Putting together the regularization formulae (Table IV) and crossing relations
(Table XI), we obtain

AL AN dug | Ay 1 ,
Asa S N Z (CA3A4AIA2 + "734C-,\a—a,,\1a 75" P oGy

+ Pl o Gyl (A-II1.3)

where

CAa/\v\u\z — eur().a—/\a) (s) (_)a(ﬁ) Sin(ot/2)l/\l_ull cos(ot/Z)l’\"H"l (SI/E)MH-’PI
dadgdrle SI(B,/2)*1 cos(B,/2) Pl (IR F W]

‘mlz y‘mat dyp-1, d3q~1 B
1 A
= .7'34 a2 ,;m:l - I:[ dSi(X‘)‘f ’ (A-T1L.4)

N=X—X; w=XN-X,

My =S4+ 53 — Max(| X' [, | p' ), and 4y = ml; — my.
My = 83+ 85 — Max({ X' |, | ' D),

1. Branch Points 4, = 0

The only quantity in (A-IIL.3) which is singular at %, = 0 is C{{,{‘}} So, we have
to show that the combination C }—i— 13.C. ” is uniform both at ¢4 =0
and ¢y, = 0.

A. Branch point at @z = 0

From (A-IIL1), the singular terms of Cf}} in (A-IIL4) have the following
behavior upon turning around g5, = 0:

sin(8,/2)1*—#1 cos(8,/2)1#l — sin(f,/2) 144! cos(f,/2)1A—! (—)rtex,
d (X)) D) — A5, ), (=)=
on the other hand, etmt%2—) = ()28 pirldeida) 50 that we find
C,\aadal)u( Pa0) = (=) CY - Pa0) = 7734C9A,,}—AM1A2(‘P34)

since (—)%* % = (—)** in the case under consideration (FF — FF). We then
verify that the relevant combination of coefficients Cg}} is uniform as it shouid be.
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B. Branch point at g, = 0
In the same way, turning around i, = O yields
sin(8,/2)14—#l cos(8,/2)1A+4] — sin(f,/2)13+#! cos(8,/2)!4—#] (-—) e,
A3 A (xE — A3, A, (—)reeentd,

Axr‘ l/lAa‘_l
Then
C§;‘/\i/‘1/\g(-¢ 34) — __(__)333+s4+/\ (_)A;(1+e34)+/\‘(1—eu) 9"}8_/\4A1A2(¢34)
Since in the present case (—)%* = (—)** = —1, the phase factor in the above

relation is in fact independent of €,, and it is again equal to 7, .

2. Branch Points at %13 = 0

In Eq. (A-IIL3), we replace 7,,C%} ,\‘H‘,\Iaz by 1;12C,\3,\ , and the above

argument holds replacing indices 3 and 4 by 1 and 2.

—M—Ap

3. Branch Points at T3, = 0

From (A-II1.3), replacing

Y by

AT,

[T+ 3

AgA1AgAs —AgAgA gy

NI —

and using Eq. (II-26) for G}, ; namely,

1 —
Ga;a’l;agz; = 773IG—A3—A1 3AgAp 0

and
G%Q/\i;/\;/\; = _")31G2—a;-a’,n;a; »
with
a = (=),
we obtain (using the shorthand C;‘;;f instead of Cj’j‘j‘ﬁz)

,\,,\, 2 ) {C::;: + "731C_A - "734[0—/\,./1i + 7y —;;:‘\ I Pis PG Apg

AshiAgdg

+ ) {C;’;:' 15:C3, A,A 4 "734[01’,\,‘/\ ~ Ma A,A,]} ‘7’42'/’4‘29’31‘/’481@\;'\4 .

"31‘1'\4"2
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A. Branch point at ¢y = 0

Let us study the behavior of Ciﬁ' after one turn around @y = 0. According to
(A-IIL.2), '

sin(6,/2)!* ' cos(8,/2) W+ | — (—)+<" sin(8,/2)1¥ ++'| cos(B,/2)1~+,
dSI(Xl);i dsa(xa);i - (_)sl+sa—e(ai+/\§) dsl(xl);:\i dss(xa);:;,
so that
Cf;;i(— Pgy) = 1,31C;fj?f§(<p31) (in the spin case considered).
Then
X;, (o) = Clgs) £ 1y Gy = X5, (— )

and the coefficients of G* and G? are uniform, as they shouid be.

B. Branch point at 5 = 0

Following the same procedure, one verifies that the behavior of X* is independent
of €y and one finds

X ,\j;)\,-(ll’sl) =1X ;;t\,;(— ‘/’31),

so that again the crossing matrix element is regular at 5 = 0.

4. Branch Points at T, = 0

In (A-II1.3), we now replace

Y by %[ZJrZ]

A0 FIAT VA VAR Ve VL
and use (II-26),
G&;a;;a;a; = 7’42G}§/\'1:-/\;—A; ’
Gig,\i;aga; = _’742G,2\;A1;—,\;—,\; .

’

We turn the crank once more, and now change A; into —A; instead of A;into —2X;
in the above argument.
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III. CONCLUSION

Of course the same line can be followed to verify that the crossing-matrix
elements between F? and G, G* are also uniform. This has been done together
with other spin configurations. We shall not reproduce here these rather tedious
calculations. '

APPENDIX A-IV. PARTICULAR CASES: CONSTRAINTS AT s =0

@ m=my;mygsEmy, s =5, = S,

The conclusions about the behaviors of 77 .. . in the neighborhood of ¢,; = 0,
g = 0 and iy, = O are the same as in the general case. But now there is a

kinematical constraint at s = 0 because the pseudothreshold i, coincides with s'/2.
cos(y; + xo) and sin(y; + y,) behave like 1/s.

Furthermore, from the regularization (Eq. A-1.3), (s¥/2)%m § Spaag, = @ + bs'/2,
where a and b are kinematically finite at s = 0.

Then (s/2)%n M 3,00, = @ + b's'/? where @' and b’ are kinematically finite
ats = 0.

Thus (s'/%)24n T7 . .. . is kinematically finite at s = 0. According to the crossing
formula (IV-6), 77, .. . ~exp[—i(x; + x)*/®"—")] near s=0 with
et ~ (Y1 if [d(s, ]2 = Limy(mg? — m,2) at s = 0.

Conclusion. Near s = 0,

(s¥/2)2om T° v

~ (51/2)2s1pE(r o)

(A-IV.1)
if [D(s, )2 = +imy(m? — m?) at 5= 0.
®) my=my;m Fmy;s3=35=5
The same kind of results holds
(i) i, coincides with s = 0,
(i) (Y2 T7 ..., is finite at s = 0,
(ili) X~ (5)FLif [D(s, ]2 |sng = Feimg(my® — my?).
Conclusion. Near s = 0,
(517228 To = (s1/2)2rttra—e)
'7'3"'4,1’ Ts
(A-1V.2)

if [B(s, )2 = Limy(m? — m?) at s =0,



304 COHEN-TANNOUDIJI, MOREL, AND NAVELET
© m=my;mg=m,

In this case both ¢, and i, coincide with s¥/2, Furthermore, the s = 0
singularity appears simultaneously in cos y; , T irpr, @nd Ti,,a_ﬁ;ﬁ,‘_,2 . For this
reason it is simpler to return to helicity amplitudes. In the present case the
functions of table XI reduce to

_ (4 m? — mP(—s)?
Ts(dm,® — s/

2my(T 15 + stM2

Ta(4m? — s)i2°

(L i — m sy
Tl — 5P

_ 2my T+ s
T1s(4mgt — s)/2

COS X3 = —COS Xy =

sin y; = sin y, =

COS x5 = —COS ¥4 = +

sin y; = sin y, =

LB p(—_g)r
sin Je — A=)

2 T1s
We deduce, in the neighborhood of s = 0,
Mg, = sin(04/2) 1 cos(0y/2) "+ Ml ~ (=) 12, (A-IV.3)
Furthermore, from the regularization (A-L.5),

e=+1 if p(—)EAh = —1,

Mipge = (9 where 1" — i (=)= = 11, ATV
The inverse crossing relation reads
M :;,,\1;,\;/\; = (— l)am (= 1)232“3‘ e—h“;_l\é) Z dsl(_X1);} dSz(Xz)?
{2} 1 2
X ds*(xs)jz ds‘(—x4)§3 M, - (A-IV.5)

Using (A-IV.3) and (A-IV.4), we deduce the kinematical constraints at s = 0,

Z dsl(_Xl)i} daz()(z)if dss(Xs):f dSA(_XA;):f M:aa‘;/\laz = (sllz)l’\ -l
{1} 1 2 3 4

where X' =X — ),  and =25 — AL (A-1V.6)
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APPENDIX A-V. EXAMPLES

In this appendix, we test all the results obtained in this paper on examples
for which one knows directly the relations between helicity amplitudes and
invariant amplitudes supposed to enjoy Mandelstam analyticity properties.

1. TEST OF THE REGULARIZATION OF HELICITY AMPLITUDES
A. General Mass Case

B H+0 >3+ 0

1 2 3 4 "n=-L

In terms of the usual invariant amplitudes 4 and B, supposed to be kinematically
regular, helicity amplitudes are expressed by:

Maao;alo = ﬂ(Ps)/\s (4 + (B/2)y - (ps + pJ)] ”Al(P1)
where
L (DVH L)) "
MM—WQW%WQ
and

_ 1 . .
aNp;) = V3 (DVALZ@OY. DALY
We get, after some algebraic calculations:

]
c0s 5 H[(@y + my)s + my) — pk] (4 — BT )

+ B (e + my)eos -+ mg) + pkl]

Mo 30 = [2m2my(w; + my)(ws + my)]H?
=M_0. 30 (parity invariance), (A-V.1)
sin —92—3 [(w; + my)(wg + my) + pk] (A —- B ;._ = )
+ By + m)ws + my) — pkl|
Miyo;—y0 =

[2m2my(wy + my)(ws + mg)]1/2
= —M_;0.;0  (parity invariance).

For M40 > one has

A =3, p =1 e = +1, Ny = —1, myy, =0, myy = 0.
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From Eq. (II-17) one finds:
2(w; + my)wg + m3) [A +B (s1/2 _ m)]

oy = Sy = [2m2my(w; + my)(ws + my)]H/? ’
2k [—A + B+ m—ljﬁ)]
'@34 = glz =

[2m2my(w; + my)(ws + mg)]*/2
One verifies directly that, for ny; > my, , mg > my,

Fio,;o = s'2ef, and Fio;}o = §S'PS LS By

have no kinematical singularity, except for the s'/2 factor which occurs in all
BF — BF reactions. Using the fact that (w; -+ m;)*/? is singular at the pseudo-
threshold when m; < m;, one treats easily the other mass configurations of table(IV),

@ 0 +0->+73

1 2 3 4 n=—L

From
Mippo0 = ﬁA’(Ps)[A + (B/2)y " (p. — p1)] UA4(P4)
where
DVAL (i) €) ", e
l?,\(pi) = (Dllg(Lgl((il))e_?l) . A) (2) /
we get

B
My 00 = Ap(w; + my + w, + my) — 7(“’1 — wy)(ws + My — wy — My)

— Bk cos 0,[(ws + m)es -+ mo) — p*)

X [2mg2my(ws + my)(ws + myJ172
= = M_3—400 5 (A-V.2)
Bk sin 6,[(w; + my)(w, + m,) -+ p?l

[2mg2my(ws + ms)(w, + my]H2
Noting the identities

(wg + mp)* 2 (wy + M2 4 (w3 — M) 2 (wg — M2 = P s
(s -+ M (g + M — (g — M 0y — M2 = g T2
(w3 + M) 2 (wg — MY 4 (w3 — M) /2 (wy + MY? = @y,

Mg — m
(g + M) 12 (4 — M2 — (wy — MgP2 (wy + MYV = gy = 5,

M}—};oo = =M_4 400 -
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we simplify (A-V.2) into
1 B Pay
M% 300 = W [A‘P:u Y (my* — m®(my — my) 5
— plua b o 1)),
M o B, sin Othas
T

Now, with }; = § A, =},

)\::09 IJ’:O, 77122 +19 N3 = +I’
my, = 0, My = +1,
Sy = Bys = 0, and By = Sy = ZM‘H;oo ,

1
F 3 3:00 — 9’34'@34

= (m3,,1, I [A<P§4 - g [(2 — u)(mz + my) + (m® — m*)(my — m,)]]

has no kinematical singularity.
Wlth, )\3 = %, A4 = —%’

/\=0, H = Ia T == —la Naa = +1’
myp = —1, mgy = 0,
%4 = glz = 2M§_%;00 3 and ‘%34 = .ﬂlz = O’

B
2 — ol/2 —1,/—1 —
F;—;;oo = S1PL g, = (g 2

has no kinematical singularity (compare with table IV); BB — FF, » = —1).
B. Particular Mass Cases

(1) my = my, my = m,, my 7= my, (wN elastic scattering)

With my = my, my = my Eq. (A-V.1) become

M%O;m:cos(g&)[,{.plgij_ﬂlglﬁi]’ E = w, = w,,

W = Wy == Wy,

M4 = sin ( is )[A mil + Bw],
m? — my?

ey S-——-
MH’:%O:A_{-B 2 >
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and

sllzm*o:-io = S1/2 [A WE‘ + Bw]
1

are kinematically regular (Table VI).
2 my=my=mmg+m,

With m; = m, = m, Eq. (A-V.2) become

cos 08

M, 400 = G [ A — Bl — a2 S5t my + ma),

B(s — 4m®)'/ sin Bsn/JM
4mgm,

My 400 =

(i) Wlth Aa = %, A4 = %, Al + Az "l"‘ " iS cven, '%12 = O, and -5112 == m}i:oﬂ
= 2M 4,00 is regular at s = 0 since cos §, oc s*/2.

(i) With Ay =470 = —4}, A + A, +pis odd, &4, = 0, and
Fye = 21 3—3300 & [—B(s — 4m>)'/2 i3]/ (mymy)'/2

is regular at s = 0 (Table VII).
() m=my=m,mg=my=m',m=%“m (wm — NN)
With m;, = m, = m, my = m, = m’, Eq. (A-V.2) become

M 400 = (p/m’) A — k cos 8,8,
M;_y:00 = (ks'/2[2m’) sin 0,B,

MH; H(,O(ZA odd, 1]——1) is regular at s =0,

s—11/'§ M s—p00 = —r;zT (Z A; even, 73 = —1) isregularat s =10 (Table IX).

4) my, = my = my = m, = m (nucleon—antinucleon elastic scattering
1

Volkov and Gribov (17) have written the five independent helicity amplitudes
as functions of the invariant amplitudes, H;(i = 1, 5) (Scalar, vector, tensor,
axial vector, pseudoscalar):

M = 4p*H, — 4m® cos 0,H, — 4m? cos 8, H; — 4m®*H, — sHj,

i3

M = —4p*H, + 4m?cos 0, H, + 4 (% + pz) cos 8,H; — dm*H, — sH; ,

t -4



KINEMATICAL PROPERTIES OF HELICITY AMPLITUDES 309
M, ., ;= —s(+ cos 0,) H, — 4m*(1 4+ cos 8,) H; + 4p*(1 + cos 8,) H,,
M, ;.44 =s(1—cos 6 H, + 4m*(1 — cos 8,) Hy + 4p*(1 — cos 8,) H, ,
M, b = —25sin 8,[sY2mH, + s**mH,).

One verifies directly that

bt PMy gy [COS (—0%)]_2 My iy [Sin (%)]_2 My gy g

and  (s*®)lsin 7'M

r*M

3 1 o ]

have no kinematical singularities (Table VII).

[I. APPLICATION AND TEST OF THE CROSSING MATRIX TO N SCATTERING
We want to write the crossing matrix between the amplitudes for the reactions

N, + 7y — N3 + 7, channel s,
my + my — Ny + Ny, channel ¢,

in this case o(P) = 0, and looking at Table XI, we get:

(s) —im 1/2 A /e Ay g (8
Ma;onlo(s, hu=e s Z d (Xl),\:d (X:;),\: Myp;00(s; 2, 0),

A2
s+ m— udt . 2mP/2
COSXIZ—L——@—&, smx1=——?—g.—,
€OS y3 = —COS X1 , sin yg = —sin xy ,

Withs = Fp = L0 T = Ty = [t(t — dmD)]/2,
7 is negative on the s-physical region, so that y, is negative and thus
X3 = x1 + 7. Using parity conservation yields

M©® = M® M = M

10;10 ~10;-407 10;-40 ~0;40°>
(1) —_— (1) (1) - (t)
M& 300 M—%—%;m’ M%—%;oo - M—% $:00 °

The crossing matrix then reads

M = ifsin y MW —cosy M® ],

10;40 $ 400 3-4,00
(s) - 7 ) 1 @)
M%j);_*o = i[cos XIM% 4100 + sin X1M;~¢;oo]'
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Check of the Crossing Relation

The standard way of writing the crossing matrix for #N scattering consists
in eliminating the invariant functions 4 and B between the two equations which
give M%), , and MR, .40 (Section A-V.1). After some algebraic manipulations,

31
we get

@ _m w _ Es sin(8,/2) ~
M}O;%o = cos(Bs/Z) M} 400 —Pt M}t-g;oo s
E, . m
M;;);—fo = —*sin(8 {2) M(;)g;oo + —cos(8 /2) M‘%’l%;oo ,
)4 P
Now
m 2mitt/2 iP1L/2 .
7 X ¢0s(f,/2) = —— X pap = isitx
and
E,sin(0,/2) (s + m® — p®) 2002 | ¢ 12512 — +m—pdr ;
e - WRT F = FT =101

so that our crossing matrix is correct in the =N case. In fact, such a comparison
does not provide a test of the overall sign %'® of the crossing matrix, since the
relative sign between u and v spinors is arbitrary.

III. Tests OF THE KINEMATICAL CONSTRAINTS
(a) mm— NN
(i) s = 4my? With the help of invariant amplitudes we obtain (IV-1),
Fi_ +2mypkcosOF:_=0 at s=4my*(dpkcosb, =t — u).
From (IV-12) the constraint reads

p83+ Sa Ts

s ~ pss+84+‘rs+74 in a Vicinity Ofs = 4mN2
' =r A-v.3)

Hence the constraint is pT3, ~ p? ie., p(Mi, —iM] )=~ p* or in terms
of F},, F?_defined by pM;, = F} and pM}_ = F} s'?pksin6,,

P, —is*?ksin@ F3_ =0 at 5= 4my’ (A-V.4)
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But in this vicinity, ipk sin 6, ~ — pk cos 0, and s*/2 = 2my. So, (A-V.4) reads
Fi.+2mypkcos§ F3_ =0 at 5= 4my’

Remark. In a vicinity of s = 4my? where ¢ ~ p=2, the constraint would be
written pT® =~ p? ie., F} -+ is'/?pksin 8, =~ 0 at s = 4m,? (A-V.5) but now
ipk sin 8, ~ pk cos 8, and (A-V.5) is identical to (A-V.3).

(ii) s =0. Since Max | X’ — p’| = 1, we deduce from (A-IV.6) that there
is no constraint at s = 0, which agrees with the result obtained with the help
of invariant amplitudes.

(b) Nm— N=

(i) < = 0. From (IV.14) we obtain

ST,

81Ty

= Futstnuts {f 0% pehaves like F2,
The constraint reads
FT,, ~F% ie. M., +iSM _~ S

The regularization (Table VI) allows us to write

8 Bs s Fl-— : es
M = Frooos(5)  Mio=5in ()
where F}, and F}_ are the two RH.A.
In the neighborhood of ¥ = 0,

0, ey . {04
< cos (—2—) ~ —i.% sin ( 5 )
Thus the constraint reads
SR, — P~ R (A-V.6)

Now we can express F}, and F_ as functions of 4 and B,

B(s — mg® — m,?)
2m,

I?i~+ = Zvatii> =4 _+' >

Flo= 951 = 52 (s md — m) + 5-(s -+ mit — m)
3

and check easily that (A-V.6) holds both at s'/2 = m; + m, and sV/2 = my — m, .
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Remark. The constraint is nothing but M2, = M*®_ both at threshold and

at pseudo-threshold, as noticed by Jones [16].
(¢ NN—- NN

(i) s = 4m* From (IV-14),

8

p2 ) ~ p2+71+72+73+1"
TYTRsTITy ——

if e behaves like p?, (where p? = s — 4m?); i.e.,

Pl =p', PTi ~p’ PTy i =~ PP, and Pl ~p%

(CPT conservationimply Ty, =7T__, T, =T, . T, . =T, ).

Let us define

P = Mii, o=Mi _, @a=Mi_ ,
= Mi_ ., and P = Mg .

The constraints then read

Ppr — @) + Pps + @a) + 4ipPps = P, (A-V.7)
— P 1 — ) + PHps + a) = PP, (A-V.8)
PXe1 + @2) + PHops — pu) = PP (A-V.9)
PP + @o) — PUPs — po) = PP (A-V.10)
if et ~ p%
As already remarked (Section A-V.1),
Doy, PPoy, (1 + 2), pyf(1 — 2), and  @yfs'/%(1 — 2%)1/2
are kinematically regular (here, z = cosf,, hence (1 — 2)/2 = —t/2pt,

14+ z= —u/2p?.

Check. Following Gribov and Volkov (I7), the five invariant amplitudes
can be expressed as functions of the five independent helicity amplitudes:

-——L 2 — 2 P3 _ Ps __P_zz_ 2
H1—8p4[p(<p1 ¢2)+pz(1+z l—z) m(s—i_“m)sl/2
TP e Am @
i, = 8p? [1+z 1—z 512 sinﬂs]’

_2’5_]

sin 6,1’
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H, = — L I -
3 82l +2z 1—z msesing)
— 1 P3 Ps
Hy = — [1+Z+l—z]
—_ 2 Ps _ Py
H, 2Sp2 [P+ @) — p2 (2 =)
o[ Ps Ps p*S" s
+m (1+z+1—z)+ m s'?sin 8,4°

‘We first notice that
Ps _ P __g?g Pay __ 9.2 Ps T ¢a 9
l+z:t 2 (uit) r [( u )+%O(p)]'
If we suppose that H, is finite at p* = 0, we deduce
P(ps — @a) = P (A-V.11)
Furthermore,

2 ___u+2p2_ t+ 2p?
pz = 3 = 3 .

Hence

Pz (8 — 72) = P+ 90 + 20 (B4 B o

on the other hand,
p?sin 0, ~ +ip*cos §,.

Hence

2 (S+4m)q’5

— 4
p Z ms]_/g Sln 9 4lp (PS + p ?)50(p )

H, now becomes

4
H, = [p (P2 — @2) + P9 + o) + 4ip>p; + 2p? (% + qo‘)] + 2009

1
8t B

In order to avoid a pole in H, , at p? = 0 we must impose

P — o) + pXs + @) + 4ip*ps + 2p? (% + %) Pt~ pt
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With the help of (A-V.11) we get
PUpr — @) + PAps + @a) + 4ipPps ~ pt. (A-V.12)

On the other hand, the constraint
P(ps + @u) + 2ipPps ~ p* (A-V.13)

is necessary to cancel poles both in H, and H;.
For Hj the constraint reads

P + @2) — [P s + @y) + 2ipPps] = p?

and with (A-V.13) we deduce
Pp1 + @0) = P (A-V.14)

Egs. (A-V.11)~(A-V.14) are obviously compatible with Egs. (A-V.7)~(A-V.10).

(ii) Constraint at s = 0. From (A-IV.6) we deduce that there is a constraint
if 3(| X — u’|) is an integer. The maximum value of | " — u’ | is 2 and is reached
when X =2, — A= +1 and p' = A3 — A} = F1; ie., for instance when
MN=2A=—%}and \; = A, = +1.

The constraint reads

z dl/z( X1)_1 /2 d1/2(X2)+1 2 d1/2(X3)+1 /2 dl/z( X4)_1 /2 M gsh?/\y\z ~s,

where
sl
COS y; = —COS Yz = —COS Y3 = COS Y4 = COS ¥ = — [ = am(t — ami)e
and
. . . 2m(4m? — 5 — )12
sin y; = sin y, = —sin y; = —sinx, = siny = (s — am(t — a7’

sothat ¥, = X, Xe = T — X> Xs == X — 7, Xa = —X. We now obtain
(2 — sin? ¥) @, + sin? yp, — sin? yps — sin® yp, >~ 5.

Noticing that at s = 0, cos? ¥y = 0, and sin? x = +-1, the constraint takes up
the following form:

@1+ @ — @3 — @ =0 at s=0. (A-V.15)
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Check:

Hy= = lont oot 72 (—2+ ) + 12+ )|

+ finite term at s = 0.
Noticing that

A
AP = —w(l+5)
Pa _ S
Sy P+ ) = —e 1+ ),

we must have the same condition (A-V.15): ¢ + ¢ — g — @, =0at s =0
in order to avoid a pole in H; at s = 0.
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